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ABSTRACT

jii

T he enorm ous num ber of accidental deaths associated with motor-vehicle 

accidents each year remains a m ain issue of highway safety. For the assessm ent of 

the accident risk associated with particular highway locations, probabilistic type 

empirical Bayes m ethods have been considered a viable approach. However, 

considerations with regard to the adequate sample size, the random  effect of 

vehicle exposure, the utilization o f both accident histories and m easurem ents of 

roadway and traffic characteristics to  identify significant causal factors have not 

been discussed in detail.

In this thesis, four new m eth o d s-a  modified A rnold and Antle procedure, 

two new m edian estim ators for a gam m a distribution, a  knowledge-based model, 

and a hierarchical accident index m ethod-w ere developed to identify significant 

causal factors and assess traffic accident probability in the highway system. An 

evaluation of these m ethods was perform ed on real da ta  from over 300 sites in 

Pennsylvania. A  comparison of these methods and classical regression m ethods is 

also presented.

Based on an absolute error loss function, it was concluded that the 

m odified empirical Bayes procedures, especially the two new m edian estim ators, 

are superior to the o ther methods in estimating accident risk when accident 

statistics and m easurem ent data are  available. The knowledge-based m odel
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approach  proved valuable for predicting accident risk for roadway sections as well 

as identifying significant causal factors. The hierarchical accident index m ethod, 

using bo th  accident records and subjective judgem ent, perform s almost as well as 

the m odified empirical Bayes procedures in evaluating accident risk of wet 

pavem ent accidents.
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C hapter 1 

IN TRO D U CTIO N

1

1.1. Background

The identification and risk assessment for an event system has been a topic 

o f research for several decades. Interest in this problem  originates from the 

designing of large-scale engineering systems such as nuclear pow er plants, 

chemical processing plants, traffic systems, and the like. The identification and risk 

assessm ent technique is applied to analyze the causation or assess the  risk o f a 

possible undesired event in the system. From  a safety point of view, an undesired 

event could be a leak of radiation, a w ater pum p failure, a  fire, a  toxic gas leak, or 

a traffic accident. In this thesis, the research was focused on the traffic event 

system.

Traffic accidents are the most common and uncomm on events in our daily 

lives. According to the 1989 National Safety Council report, the  num ber o f m otor 

vehicle accident deaths represents 49% of all accidental deaths (see figure 1.1). If 

one looks a t the num ber o f m otor vehicle accident deaths and the death  rates in 

the consecutive years from  1983 to 1988, it is clear that there  exists a  serious issue 

in the prevention of traffic accidents (see figures 1.2 and 1.3). In striving to 

improve the  safety of the traffic event system, num erous m ethodologies have been



www.manaraa.com

2

Public Accidents

(18.0%

Home Accidents

(22.5%)

(10.6%)
Wori< Accidents

Motor-Vehicle Accidents
1

(49.0%)

Source: National Safety Council. 1989.

Figure 1.1. Causes of accidental death as reported  by the 
National Safety Council.
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Figure 1.2. Accidental deaths associated with m otor vehicle 
accidents (1983-1988).
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Source: National Safety Council, 1989.

Figure 1.3. D eath  rates in m otor vehicle accidents (1983-1988).
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developed. M ost of them  concentrate on identifying the problem  (hazardous, 

accident-prone, abnorm al, etc.) locations. However, the effectiveness and 

accuracy of these procedures are limited. Today, the identification of 

accident-prone locations becomes more crucial due to the increasing dem and for 

system safety under severe resource and budget constraints.

The traffic event system is generally recognized as a human-vehicle- 

roadway system. The causation of a traffic accident is considered as an outcom e 

o f interaction among the  hum an, vehicle, roadway, and traffic factors. T he 

complexity and uncertainty in the system m andate the developm ent of a  workable 

m odel and thus the identification and risk assessment problem  rem ains a topic 

worthy of study.

1.2. Review of L iterature

Studies o f the traffic event system identification can be traced back to the 

1950s. M ost of the work relied principally on the accident statistics in attem pting 

to  identify the  so-called problem  locations without analyzing the causation of 

traffic accidents. In highway agencies, the accident frequency m ethod is the most 

commonly used m ethod. It has the advantage of simplicity and is easy to 

im plem ent. Using this m ethod, a location is identified as a  hazardous location if 

the accident frequency at the location in a specific time period is higher than a 

critical value.
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A  second approach, the accident rate  m ethod, involves the concept o f risk, 

which is determ ined simply by dividing the num ber of accidents by the vehicle 

exposure (usually in millions of vehicle miles, MVM, or millions of vehicles, MV) 

a t the location of interest. T he assumptions behind the definition are  that (1) 

there exists a  linear relationship between the accident frequency and the vehicle 

exposure (a slope), and (2) the exposure is a value m easured w ithout an error. 

However, a  comparison of the accident risk betw een sites may draw  an incorrect 

conclusion because of neglect o f the variation (random ) effect o f the exposure 

either betw een locations or at the location.

A  third technique, the quality-control method, was developed by N orden et 

al. (1956). T he m ethod applies the statistical quality-control technique to calculate 

a critical accident rate  for the same "category" of road. The critical accident rate 

serves as the upper and lower bounds of a control chart. Any road site is 

identified as a  problem  location if its accident rate falls outside the  control 

interval. Basically this approach is promising if the sample size o f the sam e 

"category" o f road sites is large enough and the variation of individual vehicle 

exposure is small. Nevertheless, the problem of neglect o f the random  effect of 

exposure found in the accident rate  m ethod is also encountered here.

A no ther approach is called an accident severity m ethod which identifies 

and/or ranks locations based on the num ber of severe accidents a t each location. 

Accident severity is defined by the National Safety Council (1976) according to the 

following categories: (1) Fatal accident, (2) A-type injury (incapacitating)



www.manaraa.com

7

accident, (3) B-type injury (nonincapacitating) accident, (4) C-type injury 

(probable injury) accident, and (5) PD O  (property dam age only) accident. 

W eighting factors are assigned to different categories to obtain an index for 

identifying or ranking. This m ethod requires a detailed description for each 

accident at each location. Additionally, it involves subjective assignment of 

weighting factors.

O ther developed methods that concentrate on analyzing the accident 

causation can be grouped into two categories focusing on the aspects of the 

roadway and the drivers, respectively (Laughland et al. 1975). M ethods in the 

roadway category include:

1. Skid testing

2. H azardous indicator reporting

3. C orrelation of geometries with accidents

4. Accident risk factor

5. Form ula m ethods

6. Field observation

F or the  second category, the m ethods include:

1. Conflict analysis

2. Speed distortion skew

3. C orrelation of speed changes with accident rates

4. Accident ra te  versus minimum safe headway

5. Physiological response testing
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T he skid testing m ethod assumes that the friction, as m easured by skid 

resistance, is an index of potential risk of skidding accidents for a given location.

A  critical value of skid resistance is usually assumed to represen t the minimum 

skid resistance that is considered necessary to provide sufficient traction for 

vehicles traveling on a particular roadway section. A  location is identified to be 

slippery if its skid resistance is lower than the critical value. D eterm ination of the 

critical skid resistance for the population of road sites, however, is clouded by the 

site- and time-specific characteristics of skid resistance (Giles and Sabey 1959;

Rice 1977). Thus, the effectiveness of using skid resistance alone to  assess 

accident potential may not be adequate. A  rem edy procedure tha t adjusts the 

m easured skid resistance with respect to standard conditions was developed by the 

Pennsylvania T ransportation Institute (W am bold et al. 1988). It is designed to 

take care of the random  effects caused by environm ental conditions. An 

application of this procedure is described in chapter 6.

T he hazard indicator reporting m ethod is designed to  identify locations or 

conditions that help to cause or increase the  severity of highway accidents. The 

accuracy of the hazard indicator reporting depends on the knowledge and 

judgem ent o f highway personnel.

T he m ethod of correlating road geometries to accidents has been used 

increasingly through a statistical technique known as regression analysis. This 

analysis m ethod basically assumes that betw een the accident and highway 

geom etries exists a cause-and-effect relationship and that a  location can be
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identified to  be hazardous through the constructed relationship. The difficulty 

involved with this m ethod is tha t various interactions between the  com ponents of 

geom etries need to be taken into account.

Fine (1971) proposed the  approach of accident risk factor for identifying 

hazardous locations. Essentially, the m ethod uses a scheme of rating assignments 

to  deal with vague information in the traffic system and classify them  into different 

levels. The assignment o f the ratings is crucial to the identification procedure. 

D ifferent ratings might result in different lists o f hazardous locations.

The form ula m ethod is a  deterministic approach to the m odeling of the 

traffic accident system. It attem pts to relate the suspected casual factors to the 

accidents. T he assumption behind this m ethod is that hazardousness can be 

com puted by using m easurable "independent" variables. U nfortunately, the 

identification of the independent variables is difficult and an im proved scheme 

might be needed.

The field observation approach can give valuable suggestions if the 

observers are  well trained to  understand the causation of traffic accidents.

H azards are  identified through the observer’s judgem ent during a routine field trip 

o r a specific trip to a  location having high accident frequency. It should be noted 

that the location with identified hazards may not always have high accident 

frequency since drivers may also perceive the hazards and drive m ore cautiously.

Perkins and H arris (1968) developed the traffic conflict analysis technique 

to  analyze the  accident potential at intersections. An evaluation of this m ethod
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was then done by B aker (1972). Using this approach, a location is identified as 

hazardous if it has a high num ber of traffic conflicts. The most promising use for 

this technique is to prescribe applicable improvements for the hazardous locations.

T h e  speed distribution skew m ethod was proposed by Caples and 

V anstrum  (1969). It assumes that the increase of accident frequencies is 

proportional to the increase of speed difference between vehicles. T he existence 

of a wide speed difference between vehicles, displaying a skewed speed 

distribution, is identified as an accident potential,

A  m ethod that correlates speed changes with accident rates assumes that 

the num ber of vehicle speed changes indicates the accident potential of a  highway 

section. Researchers a t the North Carolina State University found that an 

absolute speed  change of 4 mi/h per unit o f time would be critical (H eim bach et 

al. 1968).

Rockwell and T reiterer (1968) proposed the accident rate versus the 

minimum safe headway m ethod to identify the hazardous location. T he basic 

assum ption of this m ethod is that the accident potential increases when relative 

velocity is high and headways are short. If m ost of the vehicles at a  location 

operate  a t less than a minimum safe headway, the accident potential o f the 

location will be high.

T he physiological response testing m ethod m easures the driver’s response 

at the driving task. Special equipm ent (which is usually not owned by the highway 

agencies) and techniques are required to perform  this testing, and the operating
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cost is high. H ence, this approach may be m ore suitable for a research study than 

for routine testing.

An extensive study of the wet w eather accidents using analytical and 

empirical techniques was conducted by Ivey and Griffin (1977) a t the Texas 

T ransportation Institute (TTI). An analytical wet w eather index and an empirical 

wet w eather index were form ulated and used to identify hazardous locations and 

predict wet w eather accidents. The effectiveness of the analytical wet w eather 

index, as the authors claimed, may not be superior to the empirical wet w eather 

index.

The Bayesian estimation m ethod is a different approach from those 

m ethods described previously. It has been applied to a  vast a rea  of science and 

engineering systems emphasizing the characteristic o f uncertainty. In 1955, 

Robbins developed the nonparam etric (frequency ratio) empirical Bayes m ethod 

(EB M ) to  estim ate the posterior m ean of a  Poisson distribution. The param etric 

EB M ’s were then developed by M aritz (1966, 1969, 1970), R utherford and 

K rutchkoff (1969), and Lemmon and Krutchkoff (1969). Essentially, the 

param etric EBM  follows the formalism of the Bayes theorem  (1763) except tha t it 

evaluates its prior information and hyperparam eters empirically.

The EBM  has been generalized or reform ulated by m any researchers to 

deal with different problem s such as survival time, risk and reliability estim ation, 

and so on. The estim ation of the num ber o f accidents and /or the accident risk is 

one of the possible applications. The application of the EBM  to a traffic event
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system was realized by Arnold and An tie (1978), who form ulated a param etric 

EBM  to estim ate the  risk of traffic citations for drivers. Abbess e t al. (1981) also 

employed an empirical Bayes procedure to evaluate the effectiveness of the 

rem edial treatm ent o f road surfaces based on the expected num ber of accidents. 

H auer and Persaud (1984) estim ated the probabilities of accidents to  determ ine 

the  hazardousness o f various locations. A  variant EBM  was developed by Briide 

and Larsson (1988) to deal with problems that arise when using conventional 

EBM  for a small sam ple size. For evaluating accident risk, Higle and Witkowski 

(1988) form ulated a two-step EBM  to identify hazardous locations, using biased 

estim ators of the sam ple m ean and variance. A  study of wet pavem ent accidents 

using Arnold and A ntle’s procedure with grouping strategies was conducted by 

Kulakowski e t al. (1990b). Because of the relatively small size in each group, the 

effect of grouping is not distinct. An extensive study of this wet pavem ent 

accident problem , using newly developed methods, was perform ed in this thesis.

In a recent report, M orris et al. (1991) presented a  hierarchical empirical Bayes 

procedure to  rank highway sections based on expected accident ra te  and to 

evaluate the effectiveness of rem edial measures. A  reference data  set with a large 

num ber of road  sites is necessary for the m ethod to evaluate its m odel 

param eters.

W hen the  objective information (param eter m easurem ents o r collected 

data) is not available and hum an factors play an im portant role in the system, a 

subjective type of approach would be an alternative way to m odel the system.
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T he application of Shafer’s belief function theory (1976) to  the risk assessm ent 

problem  in traffic event systems would be a  new application in this research, A  

brief introduction to  the Bayesian methods and the belief function theory is given 

in chap ter 2.

1.3. S tatem ent of the Problem

Generally speaking, accident reduction problems in the traffic event system 

can be viewed as a control problem. Two schemes are  often applied. O ne is a 

direct approach and the  other is an indirect approach. T he direct approach 

m ethods include accident frequency m ethod, accident rate  m ethod, severity rate  

m ethod, EBM , and so on; these methods rely solely on the accident histories to 

assess the accident proneness for the location of interest without making any effort 

to  identify the system. Conversely, the indirect approach m ethods—which include 

the correlation of geometries method, accident risk factor m ethod, formula 

m ethod, wet w eather index, and so o n -a ttem p t to identify the system first using 

the m easurem ents o f suspected attributing factors only or the m easurem ents and 

the accident histories simultaneously. A ppropriate counterm easures are 

prescribed based on the identified model. Figures 1.4 and 1.5 illustrate the 

structures o f the two approaches.

T he common problem  to the direct approach m ethods is that the accident 

histories suffer from the deficiencies of time delay and insufficient degree of
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Yi (Observed Number of Accidents)

Figure 1.4. The structure of the direct approach.
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Ya (Acceptable Number of Accidents)
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Yi (Observed Number of Accidents)

Figure 1.5. The structure of the indirect approach.
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accuracy when reporting. M oreover, a bias introduced by the regression-to-m ean 

effect for the  road site of interest cannot be neglected. A  regression-to-m ean 

effect is described as a phenom enon that a  location with a  large (small) num ber of 

accidents during a "before" period tends to decrease (increase) to  a small (large) 

num ber of accidents in a  similar "after" period without having implemented any 

improvement measures.

T he difficulty with the indirect approach m ethods is that the  accuracy of 

the identified model may be limited. This may be due to the selection of model 

structure o r the system not being identifiable based on available data. In general, 

a determ inistic model is favorable because of its simplicity; however, for the traffic 

event system, the deterministic m odel may not be suitable due to the  fact that the 

system is stochastic in nature.

In response to the problem s of regression-to-m ean effect and the inherent 

random ness o f the system, the EBM  has been  shown advantageous (Arnold and 

Antle 1978; Abbess et al. 1981; H auer and Persaud 1984). However, the following 

shortcomings still remain:

•  T he adequacy of sample size for estimating the  model param eters has 

not been determ ined.

•  T he random  effect o f vehicle exposure in the  population of road sites 

has not been taken into account.
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•  No effort has been m ade to utilize both the accident histories and the 

m easurem ents o f roadway and traffic characteristics to  identify 

significant causal factors for a traffic accident.

1.4. R esearch Objective

T he objective o f the proposed study is to  develop a m odeling technique, 

based on the probabilistic-type approaches, for traffic event system identification 

and prediction. Specifically, the problems of determ ining the adequate sam ple 

size for estimating m odel param eters, the random  effect of vehicle exposure, and 

the utilization of both accident histories and m easurem ent data  will be addressed.

1.5. Thesis Overview

The m ethodologies presented in this thesis attem pt to address the task of 

traffic event system identification and risk assessment. T he w ork begins with a 

review of literature, problem  statem ent, and description of research objective in 

chap ter 1. An introduction to the Bayesian m ethods and belief function theory is 

p resented  in chapter 2 to  provide a theoretical foundation for the later 

developm ent work. The developm ent work is divided into two p a rts -o n e  which is 

considered as an objective type of approach, based on the Bayesian m ethods, and 

the o ther based on the belief function theory, a  subjective type of approach. For
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the  objective approach, a modification (Lin e t al. 1991) was recom m ended in 

chapter 3 to  improve the empirical Bayes procedure developed by A rnold and 

A ntle in 1978. An evaluation of the empirical Bayes, maximum likelihood, and 

Bayes estim ators using the M onte Carlo simulation technique was also perform ed 

and is presented in chapter 3. Two new m edian estim ators were developed and 

are  evaluated (Lin et al. 1991) in chapter 4, where an absolute error loss function 

is considered. In considering the subjective type of approach, a knowledge-based 

m odel was developed and presented in chapter 5. A fter the developm ent work, 

validation was perform ed on a real data set provided by the Pennsylvania 

D epartm ent o f T ransportation using the developed methodologies; the validation 

is shown in chapter 6. A  comparison of these methodologies based on their 

estim ation accuracy was then m ade to determ ine the best m ethod or m ethods to 

address the problem  of risk assessment and identification. Conclusions and 

recom m endations are then described in chapter 7.
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C hapter 2

IN TRO D U CTIO N  TO  BAYESIAN M ETH O D S AND 
B ELIEF FU N CTIO N  T H E O R Y

2.1. Bayesian M ethods

Consider an estim ation problem in which observation y of a  discrete 

random  variable Y is available. The probability function is f(y | h ), and the 

param eter "H is estim ated in a minimum square error sense. Classically, the 

f(y j "H ) is in terpreted as a  sampling distribution. The consideration of f(y | h ) as a 

function of y, with h fixed is called the sampling distribution of Y, given *1. If 

results from  a random  sample, say y„ y2, y3, ..., yn, are available, then a likelihood 

function is defined as:

n / ( y J n )
j«i

It is a  function of the param eter *1. The utilization of the  likelihood function to 

rep resen t the  sample inform ation is based on the likelihood principle, which states 

that the likelihood function contains all the information from  the sam ple tha t is 

relevant for inference making. Following this principle, two param eter estim ation 

schemes, the  maximum likelihood estim ator (M LE) and the  Bayesian estim ator 

are  often  used. The M LE is designed to find the value of param eter *1 that
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maximizes the  likelihood function. It can be in terpreted  as the value of *1 that 

makes the  observed sample results appear most likely (W inkler 1972).

Frequently, it requires a complex iterative procedure to obtain a desired maximum 

value.

The well known Bayes theorem  (1763) provides a  simple and useful 

formalism to  incorporate subjective prior knowledge into the analysis of an 

experiment. It is derived from  manipulating the joint, conditional, and marginal 

probabilities. If A  and B are considered to be two events, a m athem atical 

expression of the Bayes theorem  will be

T o the estim ation problem, a probability density function for the param eter *1, 

referred to  as prior distribution, is required in the Bayesian approach. Bayes 

theorem  gives the posterior density of the param eter *1 as:

Bayes’ estim ators will be the optim al estimators when the prior distribution is 

precisely known. In practice, this is rarely the case; therefore, an  estim ation 

procedure for the prior distribution must be developed. Before introducing the

estimation procedure for the param eter i\ in the traffic event system, some 

fundam ental assumptions were m ade and described in the next subsection. These

P ( A , B )  = P (A \B  )P( B ) -  P{ B\A )P( A ) (2.2)

(2.3)
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assum ptions are considered to be essential to the probabilistic-type models 

discussed in later chapters.

2.1.1. Fundam ental Assumptions and Notations in Estim ating A ccident R ates

T he occurrence of traffic accidents on a road site is generally assum ed as a 

Poisson random  process. This originates from the theory of queues and can be 

in terpreted  as below:

If a  random  variable t( is considered as the arrival time of the  i- custom er 

(traffic accident) requiring service in a service system (at a road  site) and 

the  interarrival sequence associated to tj (i > 0) is represented  by T i+I with

T*i =  tj*, - tj (i > 0)

then, the sequence T„ T2, T , ,  , T n, is called a  point process over the

positive real axis R \  The point process is called a hom ogeneous Poisson 

random  process with an intensity H  if and only if its associated counting 

process o f the  num ber of customers (the num ber o f traffic accidents) N(t) 

satisfies that

1. For every pair o f {r,s} and s >  r; (N (s)-N (r)} is a Poisson random  

variable with mean (s-r)H.

2. N(t), t > 0 has independent increments. T hat is, {N O ^-N ^,)},

{N(t3)-N (t2)>, {N(t«)-N(t3) } , ......... {N(t0)-N (tn.,)} are independent for

every 0 £ t, £ t2 < t3 < ...... < t„.
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T he assum ption of a Poisson process implies that for a road site, the 

probability of y accidents occurring in time interval t given a constant average rate 

h can be represented  by a Poisson distribution with the expression:

w here Y and H  are two random  variables and ht (=  X) represents the average 

(expected) num ber o f accidents in the time interval t. It should be noted that the 

average num ber of accidents X, which is assumed to  be the true num ber of 

accidents for any specific road site, can never be known and may vary from site to 

site. Estim ating the average accident rate h and/or the expected num ber of 

accidents X will be the main task of param eter estim ation in the empirical Bayes 

procedures. In this research it is assumed that for the i-  highway section of 

interest, the num ber (yf) of traffic accidents for a time period o f interest will be a 

Poisson random  variable with param eter Xt given by:

P( Y=y\t, H=h ) = m  , with y  = 0,1,2,3, - (2.4)

(2.5)

w here is the  traveled vehicle miles for the i-  section, calculated as:

M, = SL*ADZ* DAYS, (2.6)

w here
SL =  section length 

ADT =  average daily traffic 
DAYS =  duration
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T he h, in equation 2.5 is the  accident rate for the i-  site. Mj will usually be given 

in millions of vehicle miles. Mj will be called the exposure and hf the risk for the 

i-  site.

T he empirical Bayes procedure developed by Arnold and A ntle in 1978 

realizes the  application of the Bayesian estimation technique to  a  traffic event 

system. A n introduction to  the procedure is given in the next subsection,

2.1.2. A rnold and A ntle Procedure

It is commonly assum ed for a collection of different road sites that the 

expected accident rates h,, i = 1,2,3,... are independent and identically distributed 

as gam m a random  variables with a density f(h | a ,6) (A rnold and A ntle 1978).

T he param eters a  and 6  are  called the shape param eter and the scale param eter, 

respectively, o f the gam m a distribution. The prior probability density for the 

accident ra te  a t the i-  road site, hif can then be expressed as:

, with ht >0, a  >0, p >0
(2.7)

w here

a>0 (2.8)

here  t is a  real variable.
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Since the param eters in the prior distribution for the hs are not usually 

known, a  procedure for estimating them  from a given set o f observations on 

highway sections similar to the i-  highway section must be developed. Following 

the  approach given by Arnold and Antle (1978) (hereafter referred  to as the AA 

procedure), it is assumed that for each of N similar highway sections, the exposure 

(M J and the num ber of accidents (y) for the time period of interest are  known. If 

SY and SSY are the sums of y  and y 2, respectively, and likewise if SM and SSM 

are  the  sums of Ms and M 2, respectively, it can be shown that when using the

m ethod of m oments, estim ates for a  and 6  are given by:

a = ( SSY)( SM ) _ SM_ _ SY (2.9)
( SY)(  SSM) ~ SSM " SM

and

a = SY  (2.10)
P (S A f)

T he expected value of the accident rate hif given the observation y, can be 

expressed as:

*i = £ ( W  = _ < * ^ 2 L  (2.1D
1.0+P( M t )

In this case, the maximum likelihood estim ate for hs is given by y  /  Mi.

In the following chapters, the AA procedure was considered for the 

problem  of risk assessment and identification in a  traffic event system. A
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modification of this procedure was recom m ended for those problem s in which the 

estim ates o f the param eters obtained in the prior distribution becom e 

unreasonable. Two new approxim ate median estim ators based on an absolute 

e rro r loss function are also presented.

2.2. Belief Function Theory

The belief function theory (D em pster 1967; Shafer 1976) is intended to 

provide a m athem atical foundation and systematic procedure for combining bodies 

of evidence of a proposition. It originates from  the formalism of Bayesian 

inference. However, it assigns lower probabilities (Shafer’s degree of belief) to 

propositions ra ther than simple additive probabilities as the Bayesian does. The 

theory uses a num ber betw een 0 and 1 to indicate the degree o f belief (support) 

for a body of evidence to a  proposition. Its combination scheme for the degrees 

of support to  a proposition is called D em pster’s rule of combination. An 

application o f this theory to  the problem  of identification and risk assessment in 

traffic event systems to construct a knowledge-based model is p resented  in chapter 

5. A  brief introduction to this theory is presented in the following subsections to 

give a  general picture. T he notations, definitions, and theorem s are  followed by 

Shafer’s m athem atical theory of evidence (1976).
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2.2.1. Basic Definitions and Theorem s

C onsider a param eter e  and the finite set of its possible values 0 ; the 

proposition of interest would be "the true value of e  is A". H ere A  is a subset of 

0 . T he set o f all subsets of @ is denoted by 2e * As an illustration, if:

© = U , B) 

then 2e = {{ol, U), iB), iA,

This implies that, by properly choosing the e  and 0 , the  2e can be the set that

contains all propositions of interest. If we let the 0  be the set of all the different 

possibilities under consideration, then it is called the frame o f discernment that 

discerns a  proposition corresponds to a subset o f 0  (Shafer 1976).

D E FIN ITIO N  2.1. If 0  is a fram e of discernm ent and A  is one of its subsets,

then a function m: 2e -  [0 ,1] is called a basic probability 

assignment (bpa) whenever

m(c) = 0  and £  m(4 ) = I.
y4cr0

The quantity m(A) is called A ’s basic probability number. It is the m easure 

o f the belief tha t is comm itted exactly to A, but not the total belief com m itted to 

A. The m (A) cannot be further subdivided and does not include portions o f belief 

com m itted to subsets of A. To m easure the total belief com m itted to A, a belief
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function is defined. The class of belief function based on  the bpa m is defined as: 

D E FIN ITIO N  2.2. A  function Bel: 2e -  [0,1] is called a belief function over $  if

for some basic probability assignm ent m: 2e -  [0,1]

Bel{A) = £  m(B)
BeA

It should be noted that the bpa m produces a  given belief function th a t is unique 

and can be recovered from  the belief function by the following theorem :

T H E O R E M  2.1. Suppose Bel: 2e -  [0,1] is the belief function given by the basic

probability assignment m: 2e ** [0 ,1]»then

m(A) = £  (-I)* -* ! Bel(B) ; V A  c  © (2.12)
BcA

w here \A-B\ is the num ber of elements in the set of [A -  B\ •

In addition to the  above definition of the belief function, another 

characterization of the belief function is shown in the following theorem :

T H E O R E M  2.2. If 0  is a  frame of discernment, then  a  function Bel: 2° -  [0,1]

is a  belief function if and only if it satisfies

(1). B e l(0 ) =  0.

(2). Bel(e) = 1.

(3). F o r every positive integer n and  every collection 
A v  Av - t An o f subsets o f e ,
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Bel(AtU -  U4„) * £  ( -1 )1' 1' 1 Be/(fL4()
fell.--*)

2.2.2. Belief Interval

The belief function BeI(A), however, does not completely describe one’s 

belief about proposition A. Since Bel(A) does not reveal to w hat extent one

believes its negation A, a definition of degree of doubt is necessary. The degree

o f doubt Doub(A) is defined as:

Doub{A) = Bel(A)

If one lets

P*(A) = \-D ouiA )

then  the quantity p*(A) is called the upper probability o f A  or the plausibility of A. 

It can be expressed in term s of the basic probability assignment m:

P '( A  = 1 -Bel(A) = £ > ( « -  £  m(B) = £  m(B). (2.13)
Bc8 geA flTVlfa

Com paring equation 2.13 with the expression in definition 2.2, one can conclude 

tha t

Bel(A) <; P \A )  (2*14)
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This inequality 2.14 characterizes a belief interval for the proposition A  if the 

Bel(A ) is called a lower probability function and the P*(A) an upper probability 

function to  A, respectively. The interval is then denoted by [Bel(A), l-Bel(A)].

2.2.3. Com bination Scheme

A fter defining the belief function and belief interval in the  previous 

subsections, the combination scheme for pooling evidence can be introduced. 

D em pster’s rule of combination (1967) provides a simple and effective way to 

com pute an orthogonal sum of distinct bodies o f evidence and produces a  new 

belief function based on the combined evidence. A  weight of conflict was also 

introduced to deal with the problem  of conflicting bodies o f evidence.

Suppose m, is the bpa over a frame of discernm ent © for a  belief function

Bel, and has the elem ents a  Anl the probability masses o f m, can be

depicted as segments o f a  line o f length 1, as shown in figure 2.1. Similarly, for 

ano ther bpa  m 2 over the © of a belief function Bel2 with elem ents B ltB2i -

the probability masses of m 2 are depicted in figure 2.1. The com bination of Bel, 

and Bel2 was perform ed by calculating the total intersection areas shown in figure

2.2. T hese areas represent a joint effect o f Bel, and Bel2. This implies that the 

total probability mass exactly committed to A  can be represented  by:
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0

ml(A3)
ml(A2)  ml(An)

1 ml

m2(B3)
m2(B2) . . . . .  m2(Bm)

 I I I________ I_______ „

1 m2

Figure 2.1. Probability mass segments of m, and m2.
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m2 Probability Mass of m l(Al)m 2(Bj)

m2(Bm)

m2(B2)

m l

m l( A l) m l(An)

Figure 2.2. Graphical representation of Dempster’s rule of combination.
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E m M f a iB p  (2.15)
A / O B j ^ A

T here  exists a problem  in calculating the orthogonal sum of m, and mz denoted  by 

©  m2' some of the intersection areas may commit to the empty set {©}; that

is, Af\Bj = 0 - To elim inate this problem, D em pster (1967) discarded those areas

com m itted to the empty set and introduced a weight of conflict--a norm alization 

factor K. The factor K m easures the extent o f conflict betw een evidences and is 

represen ted  by:

1 1K  =
1 -  c 1 -  £  ml(A)m2(Bp (2.16)

w
A , S \ » r

If c <  1, then the function m: 26 -  [0,1] is a  basic probability assignment and is 

characterized by:

X  miC
U

m(o) = 0 and m(A) = — ------------------------------  (2-17)
1 “ E

u
Hj flly ■ i

D em pster’s rule o f combination can be justified by using simple support 

functions. The simple support functions (Shafer 1976, pp .74-75) are  belief 

functions based on evidence points precisely to  a single non-em pty subset A  of ©. 

If S is a  simple support function focused on A, then m(A) =  S(A), m (© ) =  1 -
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S(A), and m (B) =  0 for all o ther B c  0 . T he quantity m (© ) is a  m easure o f that 

portion of the total belief that remains unassigned after comm itm ent of belief to 

various p roper subsets o f ©. Suppose S,(A) =  Sj and S2(B) =  s2 are two simple

support functions focused on A  and B, respectively. If ^  fl B * then bQth 

support functions are  heterogeneous and the  combined effect o f the bodies of

evidence can be shown by table 2.1. If A fl 5  = then the two bodies of

evidence are  conflicting. T he weight of conflict K can now be applied to 

norm alize the basic probability numbers m. Table 2.2 shows the combined results.

2.2.4. An Example

Suppose that one wants to diagnose the  cause of a bad roadway section 

and th ree  basic propositions have been proposed--bad pavem ent condition (PC), 

bad geom etric condition (GC), and bad traffic condition (TC). The fram e of 

discernm ent © can then be represented by a set of {PC, GC, TC}, and its subsets 

are depicted in figure 2.3 except the empty set

Suppose that a body of evidence confirms the diagnosis o f bad pavem ent 

condition or bad traffic condition to the degree of 0.6. Then m({PC, TC}) =  0.6, 

m (© ) =  0.4, and the value of m for every o th e r subset of © is 0. The total belief 

com m itted to  the  subset of {PC, TC} is expressed as:
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Table 2.1. Orthogonal sum of heterogeneous evidence 
for propositions A and B.

Com mitted to A  

m(A) = s L(l -  s2)

Uncom m itted 

m(0) = ( 1 - ^ ( 1  - s 2)

Com m itted to A fl B 

m(A fl B) = s ŝ2

Com mitted to B 

m(B) = j 2(1 -  s,)

Table 2.2. Orthogonal sum of conflicting evidence 
for propositions A  and B.

Com m itted to A

5,(1 -  5-)
m(A) -  ------ 2-

1 '

Uncom m itted

( l - ^ ) ( l - 5 2) 
m(0) = — -------------

1 -  5^2

Com m itted to ®:
Com m itted to B

5 .(1  -  5 .)
m(.B) = 4 -------

1 -  i , s 2
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Roadway Section

( PC, GC, TC }

{ PC, GC } { GC, TC } { PC, TC

{ P C } { G C } { T C }

Figure 2.3. The subsets of the set of the roadway section.
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Bel({PC, 7C1) -  m({PC, TCf) + m({PC\)  + m({TC\)

W hich is different from the am ount of belief that comm itted precisely to A, the 

m({PC, T C » .

If there  are  two bodies o f evidence, one confirming the proposition to the 

degree of 0.5 with basic probability assignment m, and the o ther disconfirming the 

proposition to  the degree of 0.3 through the basic probability assignm ent m :, then 

the com bined effect on belief is given by ©  m2» an orthogonal sum. Following

the form ulation given in table 2.2, one can obtain the  value of norm alization 

factor K  = 1 /  (1 - 0.15) =  1.176. The combined basic probability num bers are

ml @ m 2({PC, TC}) = 0.35*1.176 « 0.4117

m1 ©  m2aP C , TC}) = 0.15*1.176 = 0.1764 

m: ©  m2(0) -  0.35*1.176 = 0.4117 

W here [PC, TC) represents the complement subsets of {PC, TC} over the frame

of discernm ent $  =  {PC, TC, GC}. It should be noted that the belief interval of 

{PC, TC} has been changed from  the original interval of [0.5, 0.7] to  a new 

interval o f [0.4117, 0.8236] after the combination process. This is intuitively 

correct since the disconfirmation evidence mildly eroded the degree of support to 

the  proposition of {PC, TC}.
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2.3. Summary

In this chapter, the Bayesian methods and belief function theory were 

introduced. Specifically, the AA procedure was discussed. The procedure will be 

considered in the  following chapters for the problem  of accident ra te  estimation. 

The b rief introduction to the belief function theory provides a foundation for 

constructing a subjective-type model, which will be discussed in chap ter 5.
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While it is a viable m ethod with im portant strengths, limitations also exist 

in the AA procedure. First, it cannot secure the requirem ent o f positive 

param eters for the assum ption of a gamma random  variable for the  accident rate. 

Second, the sample size problem  of the collected data  needs to be  addressed since 

it conceivably affects the  quality of param eter estimation. Third, the  assum ption 

o f constant exposure in evaluating the estimation procedure is insufficient since 

the  exposure in a traffic event system is likely to be randomly distributed. A  

m odified rule is proposed in the following sections to improve Arnold and A ntle’s 

empirical Bayes procedure.

3.1. A  Modified Rule

The phenom enon of nonpositive param eters is often encountered when the 

sam ple variance is less than  the sample m ean for the collected data . These are 

not allowable in the gam m a distribution and must be replaced by som e other 

values. A  general rem edy m easure is to assign a large value for the  param eter a  

(M aritz 1969). This may not be appropriate for the real data because of the large 

dispersion of the real data. It was observed from several exploratory analyses of
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sim ulated data  that for the traffic accident problem , the values o f  a are often 

betw een 1 and 6. This provides the basis for considering a large value of shape 

param eter a  (e.g. 10) as unwanted.

T o account for the undesired conditions of nonpositive and  large values of 

param eter a , a  modified rule for the AA procedure is necessary. Four different 

rules were exam ined to determ ine the best one using the M onte Carlo simulation 

technique. In essence, they are fixed param eter type and M LE-type rules. T he 

values o f 1.5 and 10 were chosen based on several exploratory simulations. Table 

3.1 summarizes these rules.

Table 3.1. Remedy rules.

Condition
Remedy Rules

Rule 1 Rule 2 Rule 3 Rule 4

If a s  0 Set a =  1.5 Set a = 1.5 Use MLE Use MLE

If a > 10 Set a = 10 Use MLE Set a — 10 Use MLE

The sim ulation was m ade to  simulate the Poisson process for traffic 

accidents. Accident rates h were generated by a  gam m a distribution with different 

param eter values. T hree sets of param eters, (a  =  1.2, 6  =  2.5), (a  =  3.0, 6 =  

2.5), and (a  =  6.0, 6  — 2.5), w ere selected. For the vehicle exposure, based on 

the observation of a real data set provided by the Pennsylvania D epartm ent of
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Transportation, its random  nature can be represented by a W eibull random  

variable with a corresponding high or low exposure. The high exposure Weibull 

had param eters of a =  0.15, b =  0.25, and c =  2.0, while the low exposure 

Weibull had  param eters o f a = 0.01, b =  0.1, and c = 2,0. T he param eters a, b, 

and c rep resen t the location param eter, scale param eter, and shape param eter, 

respectively. Combining the accident rate  h and the vehicle exposure, accidents 

were generated  through a Poisson generator for different sam ple sizes o f road 

sites. All o f the generating processes used the TULSIM  (Boswell 1987) software.

The sample size o f generated road sites varies from 15 to  260. The 

criterion for selecting a good rule is based on the m ean absolute errors betw een 

the actual and the estim ated accident rate h for a given sam ple. An am ount of 

10% erro r was arbitrarily chosen. Table 3.2 presents the results o f simulation. 

From  the results in table 3.2, the first rule with a  =  1.5 for a <, 0 and a  =  10 for 

a  > 10 was chosen.

3.2. A  Com parison of th e  Empirical Bayes, Maximum Likelihood, and Bayes
Estim ators Using Simulated Data

In general, the Bayes procedure and the  MLE m ethod will produce erro r 

rates that do not depend on the number (N ) of highway sections in the group, but 

the perform ance of the empirical Bayes procedure will depend upon N. To 

illustrate the  effects of exposure level (high and low) and num ber of highway 

sections, several com puter simulations were carried out, the results o f which are
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Table 3.2. Summarized results o f M onte Carlo simulation.

Parameter a =  1.2 p =  2.5 a =  3.0 p =  2.5 IIovdIItl

Vehicle Exposure
weib (2.0, 
0.1,0.01)

weib (2.0, 
0.25, 0.15)

weib (2.0, 
0.1, 0.01)

weib (2.0, 
0.25, 0.15)

weib (2.0, 
0.1, 0.01)

weib(2.0,
0.25,0.15)

Remedy
Rules

Set a  =  1.5 if a s  0 
Set a =  10 if a >  10

MAE 
<10% for 

N *35

MAE 
<10% for 
every N

MAE 
<10% for 

N *45

MAE 
<10% for 

N *35

MAE 
<10%  for 

N *100

MAE< 10 
% for 

every N

Set a =  1.5 if a s  0 
Use MLE if a > 10

MAE 
<10% for 

N *45

MAE 
< 10% for 

N *45

MAE 
>10% for 
every N

MAE 
< 10% for 

N *120

MAE 
>10% for 
every N

MAE>10 
% for 

every N

Use MLE if a s  0 
Set a — 10 if a >  10.

MAE 
< 10% for 

N *140

MAE 
<10% for 

N *100

MAE 
<10% for 

N*180

MAE 
<10% for 

N *60

MAE 
< 10% for 
N *220

MAE<10 
% for N 

*60

Use MLE if a £ 0 
Use MLE if a >  10

MAE 
< 10% for 

N *160

MAE 
<10% for 

N *60

MAE 
>10% for 
every N

MAE 
< 10% for 

N *120

MAE 
>10% for 
every N

MAE>10 
% for 

every N

Notes: MAE =  mean absolute error, 
weib =  Weibull distribution.

N =  sample size from 15 to 260.
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given in figures 3.1 through 3.12. It can be seen from figures 3.1 through 3.6 that 

under these simulated conditions the modified AA procedure is almost as good as 

the ideal Bayes procedure whenever there are at least 60 highway sections in the 

group of interest. It is also clear that the greater the exposure the less the  benefit 

o f the Bayes procedure. This is to be expected, since th ere  will be a great deal of 

inform ation for each site when the exposure at the site is large, and thus less need 

for using information from other similar sites. For estim ating the param eters a  

and fi, the EBM  is observed to have a goad perform ance from figure 3.7 to  figure 

3.12 when sam ple size is greater than or equal to 100, H ence, a recom m ended 

sam ple size for param eter estimation is 100.

3.3. Summary

A  modified rule, a  =  1.5 for a  < 0 and a =  10 for a  >  10, was proposed in 

this chap ter to deal with the problem s of nonpositive and  large values of 

pa ram eter a . A  com parison of the modified AA procedure, maximum likelihood, 

and Bayes estim ators was carried out using com puter sim ulation. The sim ulation 

results indicate that the modified procedure performs alm ost as well as any 

possible rule could perform .
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Low Risk and Low Exposure Class
Mean Absolute Error

5

4

3

2

1

0
0 60 100 160 200 260 3 0 0

Sample Size

 Bayes E B M M L E

Alpha • 12, Beta • 2-6

Figure 3.1. Mean absolute errors in estimating the accident risk for a
low-risk and low-exposure class of roads.
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Low Risk and High Exposure Class
Mean Absolute Error

2.6

1.6

0.6

100 160 200 260 3000 60
Sample Size 

Bayes “ E B M M L E

Alpha - 1.2, Beta - 2.6

Figure 3.2. Mean absolute errors in estimating the accident risk for a
Iow-risk and high-exposure class of roads.
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Medium Risk and Low Exposure Class
Mean Absolute Error

6

6

4

2

O
60 160 200 300100 2600

Sample Size 

—~  Bayes —I— E B M — ML E

Alpha - 3.0, Beta - 2.6

Figure 3.3. Mean absolute errors in estimating the accident risk for a
medium-risk and low-exposure class of roads.



www.manaraa.com

46

Medium Risk and High Exposure Class
Mean Absolute Error
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4

3
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1

0
200 260 3000 50 100 160

Sample Size

 Bayes —I— E B M M L E

Alpha " 3.0, Beta * 2.5

Figure 3.4. Mean absolute errors in estimating the accident risk for a
medium-risk and high-exposure class of roads.
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High Risk and Low Exposure Class
Mean Absolute Error

10

50 100 250 3000 150 200
Sample Size 

Bayes E B M M L E

Alpha - 6.0. Beta * 2.5

Figure 3.5. Mean absolute errors in estimating the accident risk for a
high-risk and low-exposure class of roads.



www.manaraa.com

48

High Risk and High Exposure Class
Mean Absolute Error
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0
100 200 260 3 0 00 60 160
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 Bayes — E B M M L E

Alpha - 6.0, Beta ■ 2.6

Figure 3.6. Mean absolute errors in estimating the accident risk for a
high-risk and high-exposure class of roads.
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Low Risk and Low Exposure Class
Parameter Estimates
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0 60 100 160 200 260 3 0 0

Sample Size

—  Alphahat Alpha Bet ah at - s -  Beta

Alpha - 1.2, Beta - 2.6

Figure 3.7. Parameter estimates in estimating the accident risk for a
low-risk and low-exposure class of roads.
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Low Risk and High Exposure Class
Parameter Estimates

4
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1

0
1000 60 200 260160 300

Sample Size

—  Alphabet Alpha Bet ah at ~ a ~  Beta

Alpha - 1.2, Beta - 2.6

Figure 3.8. Parameter estimates in estimating the accident risk for a
low-risk and high-exposure class of roads.



www.manaraa.com

51

Medium Risk and Low Exposure Class
Parameter Estimates
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0
50 1600 100 200 300250

Sample 3lza

~ '■“  Alphabet Alpha Betahat “S-  Beta

Alpha -  3.0, Bata - 2.5

Figure 3.9. Parameter estimates in estimating the accident risk for a
medium-risk and low-exposure class of roads.
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Medium Risk and High Exposure Class
Parameter Estimates
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0
0 60 100 160 200 260 300
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- Alphabet — Alpha Betahat - B ~  Beta

Alpha - 3.0( Beta ■ 2.6

Figure 3.10. Parameter estimates in estimating the accident risk for a
medium-risk and high-exposure class of roads.
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High Risk and Low Exposure Class
Parameter Estimates
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100 160600 200 260 300

Sample Size

~ ■“  Alpha hat Alpha - Batahat  Beta

Alpha - 6.0, Beta - 2.6

Figure 3.11. Parameter estimates in estimating the accident risk for a
high-risk and low-exposure class of roads.
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High Risk and High Exposure Class
Parameter Estimates
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Alpha - 6.0, Beta * 2.6

Figure 3.12. Parameter estimates in estimating the accident risk for a
high-risk and high-exposure class of roads.
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4.1. Two New M edian Estim ators for a G am m a Distribution

For a traffic event system, it is usually more useful to calculate the absolute 

errors betw een the estim ated num ber and the actual num ber o f accidents than  to 

calculate the squared errors between the actual and estim ated num ber of 

accidents. Also, it is well known that with an absolute e rro r loss function, the 

Bayes estim ator will be the median of the quantity of interest. Thus, a m edian 

estim ator for the  accident rate  based on an absolute e rro r loss function should be 

considered.

W ithout loss o f generality, the m edian, med, of a  gam m a distribution with 

the  scale param eter 6  =  1, can be obtained from the following expression:

Solving equation 4.1 numerically for several values of pa ram eter a  results in the 

estim ated m edian values shown in table 4.1. W hen the data  in table 4.1 are 

p lo tted  in figure 4.1, it is clear that a straight line provides a  very good fit. Two 

sim ple regression models, one without a constant and one with a  constant, w ere

(4.1)



www.manaraa.com

Table 4.1. M edian estimates obtained 
using equation 4.1.

a med a med

0.5 0.225 5.5 5.17

1 0.695 6 5.668

1.5 1.183 6.5 6.1698

2 1.678 7 6.671

2.5 2.175 7.5 7.182

3 2.674 8 7.67

3.5 3.173 8.5 8.169

4 3.672 9 8.661

4.5 4.171 9.5 9.169

5 4.6709 10 9.6568
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Median Values
10

Parameter Beta ■ 1
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Parameter Alpha
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Figure 4.1. The median values versus parameter alpha plot.
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developed. T he results in equations 4.2 and 4.3 provide two approxim ations for 

the relationship between the m edian values and the shape param eter a.

med = 0.9967a -  0.3074, with R2=1.0; (4‘2)

med = 0.952a, with R2= 0.99 (4*3)

These results provide the basis for considering two new estim ators for the accident 

rate. T hese estim ators are  defined by the following equations:

(4.4)

d, « ( 4 *5 )

where

Pp =  posterior scale param eter [^ / ( l.o + p( Af,))]

“p =  posterior shape param eter (y(+a)

T he kj and 1  ̂are two constants used for defining the two new estimators. 

The values selected for k,. and k„ were based on  a  com puter sim ulation. A  sample 

size of 100 and  varying vehicle exposures represented  by W eibull distributions 

were used in the  evaluation o f possible values for these constants. Sum m arized 

results are  shown in tables 4.2 and 4.3. The optim al values of k,. and kb represent 

the k values a t a minimum sum of absolute e rro r or sum of square erro r between 

the estim ated accident ra te  and the actual accident rate, respectively.
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Table 4.2. The optimal values o f k,. and k„ for sample size =  100 
and high vehicle exposure level.

59

Param.
Values k,, Values

e b m ,* EBMm Bayes,* Bayes^ EBM,* EBMW Bayes.* Baycs^
a = 2 
P =  1 0.29 0.04 0.35 0.02 0.87 0.96 0.88 0.99

II 
11 

a 
ci 0.28 0.0 0.30 0.0 0.95 0.99 0.95 1.0

a =  2 
p =  10 0.34 0.0 0.34 0.0 0.97 1.0 0.97 1.0

a =  5 
P =  1 0.23 0.04 0.30 0.0 0.94 0.97 0.95 1.0

a = 7 
P =  1 0.18 0.0 0.32 0.0 0.97 1.0 0.97 1.0

a =  10
P =  1

0.21 0.08 0.32 0.01 0.96 0.98 0.98 1.0

Notes: Param. -  Parameter.
EBM,* =  The condition of using the empirical Bayes procedure to calculate the sum

of absolute error.
EBM^ =  The condition of using the empirical Bayes procedure to calculate the sum

of square error.
Bayes,* =  The condition of using the ideal Bayes procedure to calculate the sum of

absolute error.
Bayes^ =  The condition of using the ideal Bayes procedure to calculate the sum of

square error.



www.manaraa.com

Table 4.3. The optimal values of k,. and kt, for sample size =  100 
and low vehicle exposure level.

6 0

ke Values k„ Values
Param. EBM,* EBM« Bayes,* Bayesw e b m ,* EBMllf Bayes,* BayesM

a = 2
P =  1

0.18 0.06 0.30 0.01 0.81 0.90 0.86 0.99

a =  2 
u =  5 0.30 0.03 0.34 0.02 0.88 0.98 0.88 0.99

(£ = 2 
p =  10 0.34 0.06 0.33 0.04 0.92 0.99 0.92 1.0

o = 5 
P =  1

0.10 0.04 0.32 0.0 0.93 0.93 0.94 1.0

o =  7 
P =  1 0.07 0.05 0.29 0.0 0.92 0.93 0.97 1.0

a =  10 
P =  1 0.02 0.03 0.30 0.0 0.94 0.94 0.97 1.0

Notes: Param. =  Parameter.
EBM,* =  The condition of using the empirical Bayes procedure to calculate the sum

of absolute error.
EBMW = The condition of using the empirical Bayes procedure to calculate the sum

of square error.
Bayes,* =  The condition of using the ideal Bayes procedure to calculate the sum of

absolute error.
Bayesw =  The condition of using the ideal Bayes procedure to calculate the sum of

square error.
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It is expected that the k* value will be 0.0 and kb value will be 1.0 for 

square e rro r loss function. This can be verified easily from  the columns of E B M ^ 

and B ayes^ in tables 4.2 and 4.3. This implies that the simulation is on the right 

track. W ith the absolute error loss function, it is noted that from  equations 4.2 

and 4.3 ideal values would be around 0.3 and 0.95 for k,. and kb, respectively, 

under the  fixed G condition. As expected, the ideal Bayes procedure does possess 

this feature as shown in the tables 4.2 and 4.3.

For the empirical Bayes procedure, the k, values decrease as param eter a 

increases for the fixed £  situation, whereas the kb values increase as param eter a. 

increases. This implies that the estimate of accident ra te  h using the square error 

loss function or the absolute error loss function varies little when the param eter a 

is large. A nother observed phenom enon is that the k,. value is sensitive to the 

variation o f vehicle exposure while the kb values are relatively insensitive. T he 

average values of k*, and k, for the small and large vehicle exposures are shown in 

table 4.4.

T he small vehicle exposure level, Mi~weib(2.0,0.1,0.01), which indicates 

tha t less inform ation is available for the accident rate  estim ation process, is 

generally the most difficult situation for obtaining good estim ates. Based on the 

above simulation, the  second m edian estim ator, using the 1  ̂value, seems to  be 

m ore promising than the first m edian estim ator using the k^

T he final chosen values for k̂  and kb are 0.21 and 0.92, respectively.
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Table 4.4. Average values of kb and k,..
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Vehicle Exposure
k. Values k, Values

EBMtb, Bayes, EBMlbt Bayes,
Mf -  weib (2.0,0.25,0.15) 0.26 0.32 0.94 0.95
M, ~  weib(2.0,0.1,0.01) 0.17 0.31 0.90 0.923

An evaluation of the two m edian estimators, perform ed on the same data  set 

reported  by Morris et al. (1991), is given in the next section.

4.2. A n Evaluation of the Two New M edian Estimators

Based on the obtained values of k, and k*, an evaluation for the two new 

estim ators was conducted on the simulated data  set reported  by Morris e t al. 

(1991) and reproduced in table 4.5. This data  set consists o f simulated values of 

events (Z|) and exposures (e^ for 35 sites. Four empirical Bayes procedures were 

applied to  the  data set, and the results for these are also presented in table 4.5. 

They a re  the  Morris hierarchical Bayes (M H ), the Arnold and Antle empirical 

Bayes, and  the  two new estim ators defined by equations 4.4 and 4.5 (L I and  L2). 

The sim ple M L E  is also given in table 4.5. The results o f these m ethods are 

shown in figures 4.1 through 4 4 and summarized in table 4.6, where it is seen that 

the two new estim ators have, for this set o f data, provided b e tte r estim ates for the 

accident risk than the o ther methods.
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Table 4.5. The simulated data set given by M orris e t al. (1991).

Site
No.

Event
zi

Expo.
et

MLE
hi

MH
hi

AA
hi

LI
hi

L2
hi

True
hi

1 6 5.5 1.0909 1.00 1.0058 0.9926 0.9253 0.93
2 3 5.7 0.5263 0.85 0.8071 0.794 0.7425 0.75
3 11 5.7 1.9298 1.22 1.3037 1.2907 1.1994 1.02
4 8 6.0 1.3333 1.07 1.097 1.0842 1.0093 1.14
5 2 6.1 0.3279 0.79 0.7269 0.7142 0.6688 0.52
6 5 6.8 0.7353 0.9 0.8717 0.8595 0.802 0.8
7 7 7.0 1.000 0.98 0.9766 0.9645 0.8984 1.26
8 8 8.1 0.9877 0.97 0.9726 0.9612 0.8947 0.92
9 13 9.6 1.3542 1,11 1.1495 1.139 1.0576 0.74
10 15 9.7 1.5464 1.19 1.2433 1.2328 1.1438 1.2
11 6 10.0 0.600 0.83 0.784 0.7737 0.7213 0.62
12 7 10.4 0.6731 0.85 0.817 0.8069 0.7516 0.81
13 14 11.7 1.1966 1.06 1.0856 1.0761 0.9987 1.35
14 13 11.8 1.1017 1.02 1.0357 1.0262 0.9528 0.81
15 13 12.9 1.0078 0.99 0.9868 0.9778 0.9078 0.88
16 4 14.2 0.2817 0.64 0.5689 0.5604 0.5234 0.76
17 10 15.2 0.6579 0.82 0.781 0.7728 0.7185 0.75
18 15 15.9 0.9434 0.96 0.9503 0.9423 0.8743 0.65
19 21 17.7 1.1864 1.08 1.1029 1.0954 1.0147 0.99
20 13 18.4 0.7065 0.83 0.7984 0.7911 0.7345 0.73
21 25 19.3 1.2953 1.15 1.1781 1.1711 1.0839 1.15
22 21 19.6 1.0714 1.02 1.0331 1.0261 0.9504 0.81
23 15 20.5 0.7317 0.83 0.8089 0.8021 0.7441 1.11
24 41 23.7 1.73 1.42 1.4952 1.4891 1.3756 1.56
25 16 24 0.6667 0.79 0.7556 0.7495 0.6952 1.05
26 27 24.5 1.102 1.05 1.0599 1.0539 0.9751 1.14
27 25 25.3 0.9881 0.98 0.9802 0.9743 0.9018 0.9
28 28 28.0 1.00 0.99 0.9894 0.9839 0.9102 0.94
29 24 29.4 0.8163 0.87 0.8541 0.8488 0.7858 0.72
30 28 30.3 0.9241 0.94 0.9335 0.9283 0.8588 0.92
31 37 32.7 1.1315 1.08 1.0903 1.0854 1.0031 1.14
32 49 32.9 1.4894 1.32 1.3623 1.3575 1.2533 1.26
33 25 33.8 0.7396 0.81 0.7917 0.787 0.7284 0.72
34 15 33.9 0.4425 0.61 0.5642 0.5595 0.5191 0.57
35 28 36.1 0.7756 0.83 0.8171 0.8125 0.7517 0.59
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Accident Rate Estimation
Estimated Rate (Accidenta/Mil.Car Miles}

1.6

0.6

0 .4  0 .6  0 .6  0.7 0 .6  0.9 1 1.1 1.2 1.3 1.4 1.6 1.6
True Rato (Accidents/Ml(.Car Miles) 

—  True Acldent Rate + MLE 

Source: Morris e t al. (1901).

Figure 4.2. Accident rate estimation using the maximum likelihood method.
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Accident Rate Estimation
Estimated Rate (Acctdents/MII.Car Miles)

1.8

1.6

1.4 -
1.2

-□□I

0.6

0.6

0.4
0.2

0.4 0.S 0.6 0.7 0.6 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
True Rate (AccIdente/Mtl.Car Miles)

True A cciden t Rate D M odified AA 

Sourcei Morris et al. (1091).

Figure 4.3. Accident rate estimation using the modified AA procedure.



www.manaraa.com

66

Accident Rate Estimation
Estimated Rate (Accidents/Mi LCar Miles)

1.6

1.6

1.4

1.2

0.8

0.6

0.4
0.2

1.1 1.2 1.3 1.4 1.6 1.60 .4 0.5 0.6 0.7 0.6 0.9 1
True Rate (Accidents/MlI.Gsr Miles)

- — True Accident Rate *  Hierarchical Bayes

aouroe: Morrla at al. (1991).

Figure 4.4. Accident rate estim ation using the M orris’ 
hierarchical Bayes m ethod.
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Accident Rate Estimation
Eat i mated Rate (Accidents/Mit.Car Mi lea)

1.8
1.6

1.4
1.2

0.8
0.6

0.4
0.2

0.4 0.6 0.8 0.7 0.8 0.0 1.1 1.2 1.3 1.4 1.6 1.61
True Rate (Accldenta/MII.Car Miles)

True Accident Rate x New L1 o New L2

8ouroe: M orris at al. (1991).

Figure 4.5. Accident rate estimation using the two new
median estimators LI and L2.
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Table 4.6. Total absolute errors for estimating 
accident risk.

Estimators Total Absolute Errors

MLE: Maximum Likelihood 7.04

AA: Modified Arnold Antle 4.72

MH: Morris’ Hierarchical 4.84

LI: New Estimator 

h = ( &p -  0.21 )
4.59

L2: New Estimator 

U = 0.92( )
4.24

4.3. Summary

This chapter presents an improved empirical Bayes procedure using two 

new approxim ate m edian estim ators when considering an  absolute erro r loss 

function. M onte Carlo simulations were carried out to determ ine the two 

constants k, and k  ̂ of the median estimators. The modified AA procedure and 

the  two m edian estim ators were then evaluated using a sim ulated data set 

repo rted  by M orris et al. (1991). Results show that the  modified AA procedure 

and the  two new m edian estim ators are  very promising.

It should be noted that if, the median estim ators and the modified rule 

p resented in chapter 3 are combined, a new rule for the A A  procedure can be
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rep resen ted  by setting & = 1.5 if & < 0.3 and estimating 0  by the equation 

P = SY f  (1.5*£Af)i « *s greater than 10, then & would be  set equal to 10 and,

accordingly, fl would be estim ated by p = SY /  (10 *SM)~ Also, the sample size for 

estim ating the param eters is recom m ended to  be greater than or equal to 100.
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C hapter 5

D EV ELO PM EN T O F  A  KN OW LEDGE-BASED M O D E L

The needs for developing a knowledge-based model that can effectively 

identify most significant causal factors and assess the accident risk for a traffic 

event system are  threefold. First, the estimation of accident ra te  through an 

empirical Bayes procedure using accident data and vehicle exposure cannot clearly 

show the effect of a  suspected causal factor, since all of the factor effects are 

represented  by only one param eter, the m ean accident rate  (the Poisson m ean). 

An extraction o f the factor effects from the m ean accident rate is usually difficult 

and inefficient. Second, the large and good quality data  set necessary to produce 

reasonably accurate estimates of param eters a  and 6  may not be easily obtained. 

Third, since hum an factors play an important role in the traffic event system, it is 

natural to adopt a subjective type of approach to  the risk assessm ent problem.

In this chapter, the procedure for developing a  knowledge-based m odel is 

discussed. The whole process begins with determ ining the model structure, 

collecting and combining expert knowledge, then finalize the m odel. A  strategy 

based on the belief function theories (D em pster 1967; Shafer 1976) is used to 

combine expert knowledge. An interpretation of the model is also given. An 

application of this m odel to the problem  of estim ating accident risk and identifying 

significant causal factors for wet pavem ent accidents is presented in chapter 6.
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5.1. M odel Structure

In order to identify the cause and effect relationship betw een a traffic 

accident and its suspected causal factors, a  diagnostic type of structure was 

selected. T he structure o f the model is constructed as a  hierarchical event tree. 

Figures 5.1 and 5.2 depict the model structure. The m odel has a maximum 

num ber o f five levels. Its highest level is the top e v e n t-a  traffic accident. T he 

second level is represented by main events, such as bad driver/vehicle condition 

and bad  roadway section. The third level consists of potential initiating events, 

such as bad pavem ent condition, bad geometric condition, and so on. T he fourth 

level (shown in figure 5.2) includes a variety o f single events, such as low skid 

resistance (SN), high surface rutting (RU T), high surface roughness (IPM ), high 

pavem ent surface age (A G E), horizontal curvature (H C), vertical alignm ent (VA), 

driving difficulty (D D ), high average daily traffic (AD T), and high percentage of 

tim e when a road surface is wet (TW); the lowest level comprises those 

categorized levels for the  factors o f the proposition of bad  roadway section in level 

four. It should be noted that the hierarchy of the proposition of bad driver/vehicle 

condition has only th ree  levels, in recognition of the attainability of driver/vehicle 

factors in practice. The ratings and definitions o f the th ree  quantities HC, VA, 

and D D  are  given in Kulakowski et al. (1990b).

The model was realized using a collected expert knowledge base. The 

collection of expert knowledge is described in the next section.
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Bad Pavement Condition

Bad Roadway Section Bad Geometric Condition

t— Bad Traffic Condition

ExperienceTraffic Accident

— Physical Status |

— p e r s o n a l i ty ^
Bad Driver/Vehicle

Vehicle Condition

Figure 5.1. The schematic diagram of the knowledge-based model, part I.
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Low SN

Bad Pavement Condition
High IPM

High AGE

Bad Geometric Condition

"1
High ADT

Bad Traffic Condition R-------------
High TW |

Figure 5.2. The schematic diagram of the knowledge-based model, part II.
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5.2. Collection o f E xpert Knowledge

An expert is generally characterized by expertise in a  specific subject or 

area. The expert’s knowledge in this subject o r area is usually viewed as a 

valuable asset. For the  problem of identification and risk assessment of traffic 

accidents, those researchers, highway engineers, and research engineers in the 

Pennsylvania D epartm ent of Transportation and the Highway R esearch C en ter of 

Federal Highway Administration, and researchers in all of the T ransportation 

Institutes across the U.S. or other research institutes relating to transportation  

research are considered to be experts in this area. A  total of 28 experts w ere 

chosen to provide estim ates of the potential for a possible traffic event.

Based on the m odel structure depicted in figures 5.1 and 5.2, a 

questionnaire (shown in appendix A) was designed to collect expert knowledge. 

T he questionnaire contains propositions for possible events in the traffic event 

system. A  scale from 0 to 10 corresponding to the probability scale 0 to 1 was set 

as a  degree of confirm ation (or disconfirmation) for each body of evidence with 

(o r w ithout) a  potential contributing effect on the proposition. The scale is one of 

increasing effect; that is, a score of 10 indicates the strongest effect on the 

proposition. The factors in the fourth level o f the model, including SN, R U T ,

IPM, A G E, HC, VA, DD, ADT, and TW, were categorized into different levels to 

reduce m easurem ent variations.
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In general, the process o f collecting expert knowledge is the most difficult 

stage in constructing a knowledge-based model. It is time-consuming and has a 

low ratio o f response. For this collecting process, a  total o f 16 copies of the 

questionnaire were returned over a 5-month period. Based on the  collected 

questionnaires, a  body of expert knowledge was assembled. T he procedure used 

for combining the expert knowledge is given in the next section.

5.3. Com bination of Expert Knowledge

T h ree  distinct schemes were considered for combining the  collected expert 

knowledge. T he first one is the min-max principle used in the fuzzy set theory 

(Z adeh 1965; Dubois and P rade 1980; Fung and Fu 1975); the second is the 

subjective Bayesian m ethod for the rule-based system (D uda et al. 1976); the last 

is D em pster’s rule of combination in the belief function theory (D em pster 1967; 

Shafer 1976).

The min-max principle is based on the  concept of union and intersection 

operators in aggregating two sets. As an exam ple, if A and B are  two sets over a

universe V , and a e A  and b e B, then the min-max principle states that:

a fl bu a A b = min(a, b) (5 -0

a U b t  a V b = max(a, b) (5-2)
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T he difficulty in using this principle to combine the expert knowledge is that the 

determ ination of w hen one should use the maximum principle or the minimum 

principle for com bination is very subjective. Also, the combination results using 

the  min-max principle, in general, are highly approxim ate and imprecise.

The subjective Bayesian m ethod assumes that the collected bodies of 

evidence for a proposition (hypothesis) are conditionally independent. If E  stands 

for evidence and H  stands for hypothesis, then a likelihood ratio is defined as

R = (5.3)
P(E\H)

T he likelihood ratio represents prior knowledge of a hypothesis. Experts are 

supposed to assign a value for this ratio to each hypothesis. In general, it is a 

difficult task for hum an experts to assign two values of conditioned probability at 

sam e time. Furtherm ore, a modification is necessary when bodies of evidence to a 

hypothesis are in conflict.

D em pster’s rule o f combination (1967) calculates the orthogonal sum of the 

bodies of evidence to  a proposition. It considers both the heterogenous and the 

conflicting conditions o f the bodies o f evidence. Therefore, the rule was selected 

to be used in this subsection.

During the process o f combining the expert knowledge, it is assum ed that 

there  is no difference between experts’ perception in assigning a scale of 

confirm ation or disconfirmation to each body of evidence. Also, the assigned
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scales by the chosen experts are assumed to be normally distributed for each 

specific proposition. Based on these two assumptions, the  combination process 

p roceeded as follows:

Step 1. Calculate the degree of support for each body of evidence. This 

was carried out by calculating the trim m ean of the collected 

experts’ assigned scales on each body of evidence. T he trimming 

procedure excluded the m ost extrem e 5%  of the assigned scales 

of confirm ation or disconfirmation. It provides a  m ore 

representative scale for each body of evidence. Based on the 

collected questionnaires, the trim m ean for each body o f evidence 

was calculated and proportionally converted into a probability 

scale value between 0 and 1. Tables 5.1 through 5.4 p resen t the 

calculated values.

Step 2. Identify fram es of discernm ent for each level. For exam ple, in 

the second level, the @ =  {Bad Roadway Section, Bad

Driver/Vehicle}; the 9  =  {Bad Pavem ent Condition (PC), Bad 

G eom etric Condition (GC), Bad Traffic Condition (TC)} for the 

proposition of bad roadway section in the  third level; the 9  =  

{Low SN, High RU T, High IPM, High AGE} for the proposition 

of bad pavem ent condition in the fourth level. By the  sam e rule, 

the o ther fram es of discernm ent can be identified. A fter
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Table 5.1. Calculated degrees of support and basic probability numbers for
the third level propositions.

Confirm. Disconfir. m(A)

Bad
Roadway
Section

Bad PC 0.429 0.007 0.427

Bad GC 0.657 0.014 0.654

Bad TC 0.657 0.007 0.655

Bad Driver/ 
Vehicle 

Condition

Driver’s
Experience

Good 0.114 0.171 0.096

Fair 0.314 0.057 0.301

Little 0.564 0 0.564

Driver's
Personality

Normal 0.221 0.114 0.201

Nervous 0.393 0.057 0.379

Aggressive 0.643 0 0.643

Driver’s
Physical
Status

Tired 0.686 0 0.686

Drug/Alcohol 
Influenced 0.879 0 0.879

Alert 0.107 0.164 0.091

Vehicle
Condition

good 0.129 0.121 0.115

fair 0.257 0.043 0.249

poor 0.443 0.036 0.434

Notes: PC = pavement condition.
GC = geometric condition.
TC =  traffic condition.

Confirm. =  confirmation.
Disconfir,= disconfirmation. 

m(A) =  basic probability number-a measure of belief that committed exactly to
each body of evidence.



www.manaraa.com

79

Table 5.2. Calculated degrees of support and basic probability numbers for the
factors in the proposition of bad pavement condition.

Confirm. Disconfir. m(A)

Low SN 0.728 0.007 0.727

High RUT 0.579 0.007 0.577

High IPM 0.5 0.4950.021

High AGE 0.314 0.036 0.306

<20 0.979 0.979

20-25 0.871 0.871

25-30 0.678 0.678
SN

30-35 0.407 0.007 0.405

0.236 0.07 0.223

>40 0.093 0.007 0.092

> 1.0' 0.721 0.721

Bad
Pavement
Condition

RUT 0.5-1.0' 0.379 0.007 0.377

<0.5 0.143 0.057 0.136

0.657 0.657>300

250-300 0.579 0.579

200-250 0.443 0.443
IPM

150-200 0.336 0.336

100-150 0.221 0.221

<100 0.093 0.093

>15 0.629 0.629

10-15 0.393 0.393

AGE 5-10 0.214 0.014 0.212

0.0832-5 0.093 0.114

<2 0.043 0.207 0.034

Notes: Confirm. =  confirmation.
Disconfir. =  disconfirmation.
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Table 5.3. Calculated degrees of support and basic probability numbers for the
factors in the proposition of bad geometric condition.

Confirm. Disconfir. m(A)

Bad
Geometric
Condition

Bad HC 0.333 0 0.333

Bad VA 0.333 0 0.333

Bad DD 0.333 0 0.333

HC
(Horizontal
Curvature)

Slight 0.136 0.136 0.12

Moderate 0.379 0.043 0.369

Severe 0.693 0 0.693

VA
(Vertical

Alignment)

Slight 0.1 0.129 0.088

Moderate 0.3 0.021 0.296

Severe 0.6 0 0.600

DD
(Driving

Difficulty)

Slight 0.15 0.093 0.138

Moderate 0.386 0 0.386

Severe 0.714 0 0.714

Notes: Confirm. =  confirmation.
Disconfir. =  disconfirmation.
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Table 5.4. Calculated degrees of support and basic probability numbers for the
factors in the proposition of bad traffic condition.

Confirm. Disconfir. m(A)

Low ADT 0.571 0.029 0.564

High TW 0.657 0.014 0.654

>15,000 0.564 0 0.564

10,000-15,000 0.407 0 0.407

ADT
6,000-10,000 0.279 0 0.279

Bad
Traffic

3,000-6,000 0.171 0.05 0.164

1,000-3,000 0.064 0.129 0.056
Condition

<1,000 0.021 0.221 0.016

>20% 0.634 0 0.634

15%-20% 0.5 0 0.5

TW 10%-15% 0.336 0 0.336

5%-10% 0.221 0.043 0.214

<5% 0.093 0.093 0.085

Notes: Confirm. =  confirmation.
Disconfir. =  discontinuation.

ADT =  average daily traffic (vehicles).
TW =  percentage of time when road surface is wet(%).
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identifying the frames of discernment, calculate the basic 

probability num ber m(A) for each body of evidence using the 

D em pster’s rule of combination to com bine the values of 

confirmation and disconfirmation obtained from step 1. T he 

calculated basic probability numbers are  shown in the last 

columns o f tables 5.1 through 5.4. It should be noted that the 

calculated basic probability numbers of the  factors in the lowest 

level represent the degree of support o f these factors. They will 

be used directly in finalizing the model. T he basic probability 

num bers for those factors in the third and fourth levels w ere then 

used to  calculate their belief intervals.

Calculate the belief intervals for the propositions in the third 

level, which include bad pavem ent condition, bad traffic condition, 

bad geom etric condition and bad driver/vehicle condition. Tables 

5.5 and 5.6 show the belief intervals for the propositions.

Calculate the belief function num bers for the fourth level factors-- 

Iow SN, high RUT, high IPM, high A G E, HC, VA, D D , high 

ADT, and high TW. Results are shown in tables 5.7 through 5.9. 

Propagate the belief function numbers and  the degrees of support 

from the lowest level to the top level to finalize the model.
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Table 5.5. The belief intervals of the factors in the proposition
of bad roadway section.

Bad Roadway Section ra(A) Bel-1 Bel-2

Bad PC 0.427 0.135 0.314

Bad GC 0.654 0.341 0.519

Bad TC 0.655 0.344 0.523

Note: Bel-1 =  lower probability. Bel-2 =  upper probability.

Table 5.6. The belief intervals for the factors in the proposition 
of bad driver/vehicle condition.

Bad Driver/Vehicle Condition m(A) Bel-1 Bel-2

Driver’s
Experience

Good 0.096 0.007 0.058

Fair 0.301 0.027 0.084

Little 0.564 0.079 0.141

Driver’s
Personality

Normal 0.201 0.015 0.070

Nervous 0.379 0.038 0.095

Aggressive 0.643 0.111 0.172

Driver’s
Physical
Status

Tired 0.686 0.134 0.196

Drug/Alcohol
influenced 0.879 0.446 0.508

Alert 0.091 0.006 0.058

Vehicle
Condition

Good 0.115 0.008 0.062

Fair 0.249 0.020 0.079

Poor 0.434 0.047 0.106
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Table 5.7. Calculated belief function num bers for the factors in the 
proposition of bad pavem ent condition.

Bad Pavement Condition m(A) Bel (A)

Low SN 0.727 0.412

Hig RUT 0.577 0.212

High IPM 0.495 0.152

High AGE 0.306 0.068

Table 5.8. Calculated belief function num bers for the factors in the 
proposition of bad geom etric condition.

Bad Geometric Condition m(A) Bel(A)

HC 0.333 0.198

VA 0.333 0.203

DD 0.333 0.199

Table 5.9. Calculated belief function num bers for the factors 
in the proposition of bad traffic condition.

Bad Traffic Condition m(A) Bel (A)

High ADT 0.564 0.312

High TW 0.654 0.459
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5.4. An Interpretation  of the Model

Essentially, the m odel hypothesizes that the occurrence of a  traffic accident 

is due to a bad roadway section and/or bad driver/vehicle conditions. This is 

intuitively correct, since the traffic event system is commonly viewed as a  hum an- 

vehicle-roadway system. The results based on the constructed expert knowledge 

base reveal the relative weight (proportion) o f each proposition to the top event, a 

traffic accident. For the roadway section part, the belief intervals for the three 

propositions are:

•  Bad pavem ent condition (PC): [0.135, 0.314]

•  Bad geometric condition (G C ): [0.341, 0.519]

•  Bad traffic condition (TC): [0.344, 0.523]

As an illustration, the belief interval for the bad pavem ent condition is interpreted 

as the total belief, based on the hum an experts’ judgem ent, that a bad pavem ent 

condition will contribute to  a bad roadway section to a degree of 0.135 to 0.314 

(on a  scale o f 0 to 1). The upper probability 0.314 represents the total belief of 

1 -Bel({Bad GC, Bad TC}). It should be noted  that there  is a  large variation 

betw een the  lower and upper probability values. This indicates that there exists a 

large difference of recognition among hum an experts in considering this 

proposition. It is also noted that the sum of the  three lower degrees of belief is 

less than 1. This is a feature o f Shafer’s theory. It reveals that for each fram e of 

discernm ent there always exists an unassigned degree of belief.
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T he belief intervals for the factors in the proposition of bad driver/vehicle 

condition indicate that there is a high degree of belief interval, [0.446, 0.508], for a 

drug/alcohol-influenced driver. Likewise, a tired or aggressive driver is dangerous, 

too. A n inexperienced driver is another possible cause of a traffic accident. In 

essence, these results coincide with this study’s engineering judgem ents.

W hen considering suspected causal factors for the proposition of bad 

pavem ent condition, the low SN possesses a high degree of belief with a value of 

0.412 and thus is considered as most significant factor. For the factors in the 

proposition of bad geometric condition, there is not m uch difference in the degree 

of belief betw een one factor and the next factor in the proposition. T he factor of 

high TW  has a higher degree of belief than the factor o f high A D T in the 

proposition of bad traffic condition.

In o rder to give a clearer picture of this interpretation, several figures were 

plotted and a re  shown in appendix B. Essentially, they represent the results that 

displayed in tables 5.1 through 5.9.

5.5. Sum m ary

In this chapter, a knowledge-based model for the accident identification 

and risk assessm ent was developed. The form ulation of this m odel is based on a 

collected expert knowledge base and the belief function theory (D em pster 1967; 

Shafer 1976) introduced in the chapter 2 . A  questionnaire as shown in appendix
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A  was designed to collect the expert knowledge. The application of the belief 

function theory to  the problem is considered to be a pioneering step.

The developed model is characterized by several features which can be 

sum m arized as follows:

•  The m odel is flexible. It can be used under the  conditions of data  

m easurem ents being available o r not available. It can provide a  degree 

of belief for a specific factor or a combined belief for the top e v e n t-a  

traffic accident.

•  The m odel can be used to  identify significant causal factors for each 

proposition.

•  The m odel can be updated when additional expert knowledge is 

available. T he model is m ore mathematically rigorous than heuristic 

because D em pster’s rule of combination and  belief function theory 

provide a  mathem atical foundation for the com bination and 

representation  of expert knowledge.

•  The m odel reveals unacceptable values of suspected causal factors such 

as SN, R U T , ADT, and so on, using calculated degree of belief.

•  An im portant drawback of this model is that the  construction of the 

m odel is based on human judgem ent and therefo re  is subjected to 

individual uncertainties.
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Chapter 6

A  CASE STUD Y - D EV ELO PM EN T O F  A  W ET PA V E M E N T  IN D EX

6.1. Introduction

A wet pavem ent accident is a type of traffic accident that occurs on a wet 

pavem ent surface. The high accident risk of wet pavem ent accidents has been 

confirm ed by Campbell (1971) and Brodsky and H akkert (1988). Essentially, the 

reduced roadway surface traction and the restricted visibility due to  rainy or snowy 

w eather are  the two main causes of increased risk of traffic accidents on wet 

roads. A  study by Kulakowski and Harwood (1990) showed that roadway skid 

resistance can be reduced by 20 to  30% when the w ater film on the road surface 

is 0.05 mm. T he objective of this case study is to develop a wet pavem ent index 

(W PI) using traffic and roadway characteristics to  identify those segm ents of 

highway having a  high potential for wet pavem ent accidents.

In o rder to estim ate the accident risk of wet roads, the vehicle exposure M, 

defined in chapter 2 was m odified to account for the factor o f percentage of tim e 

when a road  surface is wet. W M S is the new notation representing the wet vehicle 

exposure and is calculated as:

WMi = SLi*ADTi*DAYSi*TWi (6.1)
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where:
SL =  section length (miles)

A jy f  =  average daily traffic (num ber of vehicles/day)
DAYS =  tim e duration (days)

XW =  percentage of time when road surface is wet

It may be noted that when considering the wet pavem ent accident problem  for the 

S tate of Pennsylvania, the value of WM| is often in the range o f 0.02 to 2.5.

To develop the wet pavem ent index, several m ethodologies, including 

classical regression methods, a direct Bayesian regression m ethod (proposed in the 

au tho r’s thesis proposal), a hierarchical accident index m ethod (Kulakowski e t al. 

1990), the im proved empirical Bayes procedure developed in the previous 

chapters, and the  knowledge-based model presented in chap ter 5, were applied to 

estim ate the risk of wet pavem ent accidents. An evaluation o f these 

m ethodologies was perform ed using actual accident and roadway characteristics 

da ta  collected from  308 road sections in Pennsylvania.

6.2. Prelim inary D ata  Analysis

T he Pennsylvania D epartm ent of Transportation has provided a  data base 

for this study that consists of the accident records and o ther necessary information 

for 308 highway sections in Pennsylvania. These records w ere for the  years 1983- 

88 and are given in a  report by Kulakowski et al. (1990b). T hese sites had no 

substantial im provem ents during the 1983-88 period. It was decided that the data 

for 1983-85 would be used in evaluating the risk for wet pavem ent accidents and
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the results would then be used to predict the num ber o f wet pavem ent accidents 

for the years 1986-88.

A  preliminary data analysis of the real data set was carried out before 

evaluating those previously described methodologies. Figures 6.1 and 6.2 show the 

histogram s of the wet pavem ent accidents for the  periods 1983-1985 and 1986- 

1988, respectively. They essentially verify that the assum ption of a  Poisson 

random  variable for the occurrence of traffic accidents is suitable when figures 6.1 

and 6.2 are  com pared with figure 6.3, generated Poisson distributions. The 

relationship betw een wet pavem ent accidents and skid resistance is plotted in 

figures 6.4 and 6.5. It is obvious from figures 6.4 and 6.5 that no simple 

relationship can be assum ed and that using the skid resistance alone as an index 

of accident potential for a roadway section is inadequate.

6.3. An Evaluation of M ethodologies

In this section, a  num ber of methodologies including the classical regression 

m ethods, the direct Bayesian regression method, the hierarchical accident index 

m ethod, the modified empirical Bayes procedures, and the knowledge-based 

m odel were evaluated using the available real data set provided by PennD O T. A 

com parison o f these m ethods presented in the next section.
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Figure 6.1. Histogram of wet pavement accidents for the state of
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6.3.1. Classical Regression M ethods

Regression analysis is a  frequently used approach to construct a cause-and- 

effect relationship betw een attributing factors and traffic accidents. A generic 

form  of the  regression model can be represented by:

y, + e, i= l ,2 ,3 , - ^  (6.2)

w here

y  =  observations (i.e., traffic accidents) 

x =  vector o f attributing factors 

© =  vector o f param eters 

Cj =  random  disturbances (errors)

A general assum ption behind this model is that the random  disturbances e t are 

uncorrelated with each o ther and are normally distributed with zero m ean and 

constant variance. Also, the m easurem ents of the attributing factors are  assumed 

to  be free from  errors. Based on these assumptions, different types of the model 

such as linear additive type, nonlinear additive type, nonlinear multiplicative type, 

and so on, can be assumed.

T he linear regression m ethod using the least square technique is the 

simplest m ethod for perform ing param eter estimation. It gives a general picture 

o f the input-output relationship of a system. However, in most situations, the



www.manaraa.com

97

result may be misleading due to the existence of nonlinearity in the  system. To 

alleviate this problem , nonlinear regression m ethods are  applied.

T hree of the most commonly-used types, including linear additive type, 

nonlinear additive type, and nonlinear multiplicative type, of regression m odel 

w ere selected and applied to the data  set provided by PennD O T (Kulakowski et 

al. 1990b) to  observe the effectiveness of regression m ethods in param eter 

estim ation. The attributing factors were filtered first through the step-wise 

regression technique to choose the factors that were statistically and practically 

significant. Regression analyses w ere then perform ed on the th ree  models.

T he first model is a  linear additive model and is expressed as:

E(Y) = b0 + bx{WM) + b2(DD) + b3(PS) + bA(SN) + b$(TP) (6.3)

T he second model is a  nonlinear additive model and  is represented  by:

E(Y)= b0-*-blWM+b2PS+b3SN+bATP+b5(PS)(Sti)+b6(SN)(DD)+b1(SN)(TP) (6.4)

T he third m odel is a  nonlinear multiplicative model:

E(Y) = ^ O W O W W *  (6.5)
(SN)b*

w here b, a re  param eters to be estim ated and WM is the value o f w et vehicle 

exposure expressed in term s of millions of vehicle miles.

T he param eters o f the first and second m odels were estim ated by using 

M IN ITA B (Ryan et al. 1989) software, whereas the SAS NLIN procedure based
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on the Gauss-Newton and M arquardt methods was applied to  estim ate the 

param eters of the third model. The regression analyses o f these three models are 

shown in appendix B. Figures 6.6 and 6.7 show the prediction results of future 

(1986-88) wet pavem ent accidents on the same road sections for the linear and the 

nonlinear additive models. The coefficients of multiple correlation of these two 

models are  around 0.51 (R 2=26% ). A  major problem  for these two models is that 

they produce undesired negative estimates of future wet accidents. The prediction 

results o f the third regression model (equation 6.5) are shown in figure 6.8. T he 

coefficient o f multiple correlation is 0.50 (R 2 =  25.2%), which may not be be tter 

than the o ther two regression models; however, the problem  of producing negative 

estim ates in the other two models is eliminated, A common problem  in the use of 

regression m ethods is sample size. A  small data sample may not produce good 

param eter estimates.

6.3.2. A  Direct Bayesian Regression M ethod

T he direct Bayesian regression m ethod proposed in the thesis proposal 

assum es that for a location, there exists a cause-and-effect relationship betw een 

the expected (average) num ber of accidents and the attributing factors and the 

occurrence of the accidents is a  Poisson random  process. Since these attributing 

factors are  likely to be interactive, a  multiplicative m odel is assum ed. The 

proposed approach uses a different technique from the classical regression



www.manaraa.com

Pr
ed

ic
te

d 
W

et 
A

cc
id

en
ts

99

18

16 -

14-

12-

10-

+

8 16 180 2 4 6 10 12 14
Actual Wet Accidents 

Actual Accidents +  Predicted Accidents
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approach in perform ing the param eter estimation task. The procedure of the 

approach is as follows:

1. U se the step-wise regression (or the best subset regression) technique 

to identify the most significant attributing factors from  the accident 

history data.

2. Estim ate the expected num ber of accidents A* (the Poisson m ean) of 

the Poisson model by using the multiplicative model (loglinear model) 

as:

£ (A ) = n c o V  fo r  £=1,2,3,... (6.6)

H ere  a  represents the random  variable of expected num ber of

accidents kc, are attributing factors such as skid num ber, traffic 

volume, driving difficulty, and so on; and Cw C* are coefficients to be 

estim ated.

3. D efine a range of initial guess value for each param eter based on 

engineering judgem ent to formulate a nested param eter space.

4. U se the Bayes theorem  to update the probability o f each possible value 

of the  param eters.

5. O btain the expected values of the param eters using the ideal Bayes 

estim ator.
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6. Check the probability distribution of each combination of the

param eters. Shift the range of the param eter if it is necessary, then 

repeat steps 4 through 6.

In essence, the procedure is different from conventional nonlinear 

regression procedures such as Gauss-Newton, M arquardt, and G radien t m ethods 

because the coefficients o f the m odel are  assumed to be random  variables rather 

than  fixed param eters. To make a  comparison, the procedure was evaluated on 

the  real data set to estim ate the num ber of wet accidents using the m odel 

assum ed in equation 6.5. The results are  plotted in figure 6,9. F rom  this figure, it 

may be observed that the m ethod presents a close result to that ob tained  from the 

SAS NLIN procedure. However, it is noted that the m ethod depends on the 

sam ple size of the data  and the initial guess values and  levels of the param eters. 

M odifications are necessary to improve the estimation efficiency.

6.3.3. A  H ierarchical Accident Index M ethod

T he hierarchical accident index m ethod was proposed in my thesis proposal 

and applied to  the wet pavem ent index project (Kulakowski et al. 1990b). It is a 

com bination o f subjective fuzzy reasoning and a probabilistic-type approach. The 

m odel is constructed as a  hierarchy with accident risk index (A RI) a t the top level 

and th ree  indices-accident experience index (AEI), generalized skid resistance 

index (SNI), and driving difficulty index (D D I)--at the second level. T he lowest
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level is the attributing factors. Figure 6.10 depicts the concept o f the hierarchical 

structure. The combination of the three indices used the fuzzy eigenweight 

m ethod (Saaty 1977) to assign specific weight for each index. T he  definitions and 

form ulations o f the three indices are shown as follows:

•  Accident Experience Index

The accident experience index (AEI) should give, using the  previous 

accident statistics, a m easure of relative hazardousness of the roadway condition 

for each location of interest. Basically, the determ ination of the  A E I is based on 

the R ate  Quality Control M ethod (Norden et al. 1956). A  modification was m ade 

to incorporate the inform ation of accident severity and wet w eather exposure.

Following the assum ption of a Poisson distribution for th e  accident 

frequency, critical accident rates for different highway groups can be calculated by 

approxim ating the upper control limit of the num ber of accidents from "Poisson’s 

Experim ental Binomial Limit" table (Molina 1942) under a  desired coefficient of 

confidence. Statistically, if the coefficient of confidence is 0.995, the probability of 

the  observed num ber of accidents being grea ter than or equal to  the  upper limit is

0.005. This coefficient is subjectively chosen to  set a  control interval. The 

approxim ate formula for the upper control limit H u of the accident rate A RX  is 

represen ted  by:
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j|Traffic CharacteristicsAccident Records

Figure 6.10. Schematic diagram of hierarchical index method.
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The first two terms are obtained from approximating the Poisson distribution by a 

norma! distribution; the last term  is due to the fact that only an integer num ber of 

accidents can be observed. The constant c is selected for different confidence 

intervals; for instance, the c value is 2.576 for a 99.5% confidence interval. The 

procedure for determining the AEI is described as follows:

1. Identify the highway types: l~intersections; 2--sections.

2. Calculate the average accident rate (RAavg) and average severity rate

(RSavg) for each collection of highway sections (a group):

2.1. Calculate the accident rate (ARX,) for each site, using the

maximum likelihood estimate for (=  y( /  m|).

2.2. Calculate the severity rate (SEVXj) for each site. The severity

rate is defined as the total number of injuries and fatalities 

divided by vehicle exposure.

2.3. Determine the average accident rate, RAavg, and average severity

rate, RSavg, by using;
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1 N
= -i-Y) SEVX. (6-8)

<*Xff *iY 1-1

Calculate the accident rate, ARXj, and severity rate, SEVXj, for each 

location of interest. It should be noted that the data used here may 

differ from the data set used in step 2 for calculating the RAavg and 

RSavg.

Calculate the critical accident rate (RCAT) and critical severity rate 

(RCSEV):

RCATt = R A ^  + c
\

tMgyg + _h0 (6.9)
m, 2 m,

RCSEV, = RS + cI avg y
^a vg  + 1.0 (6.10)

m, 2 m.

H ere, c=2.576 for 99.5% confidence interval.

Calculate the accident experience index, A EI, for each site:

5.1. Normalize the accident rate  and severity rate as:

ARX,
ARnorm. -

* RCAT,

SEVXiSEVnorm, = ---------   (6.11)
' RCSEV,
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5.2.1. If the  total num ber of accidents and num ber of accident severity 

are to be considered, then

AEIi = max( ARnorml , SEVnormi ) (6.12)

5.2.2. If the num ber of wet accidents and num ber of wet severity are 

to be considered, then:

( ARnorm, )(wet accident ratio) t
WAnorm,  -------------     ;

' TWi I 100.

( SEVnorm, ){wet accident ratio), , ,  .
WSEVnorm, =  -------------*— ------------------------- ^  (6.13)

' TWi /  100.

and the A EI is calculated by

AEli = max( WAnorm( , WSEVnorm{ ) (6.14)

•  G eneralized Skid Resistance Index

The generalized skid resistance index (SNI) should take care o f  seasonal 

and short-term  variations of skid resistance due to environm ental conditions. This 

can be done by a norm alization procedure (W ambold e t al. 1988). T he procedure 

is designed to use a  nonlinear regression model to norm alize the skid resistance 

m easurem ent at the site of interest with respect to standard test conditions. It 

requires w eather information, dates o f m easurements, and other environm ental
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conditions, including the air tem perature for the site. A nother normalization 

procedure  was then taken by first identifying the maximum value (SNMAX) of 

adjusted skid num bers for each highway group and norm alization was perform ed 

by dividing the SNMAX by the skid num ber of each site o f interest. The ratio is 

then  called SNI. It represents a  relative m easure of the roadway surface traction. 

A  site with a high SNI is supposed to represent a  condition of low surface 

traction.

•  Driving Difficulty Index

The last index, driving difficulty index (DDI), is com posed of three 

variables, the rating of horizontal curvature (HC), the rating of vertical alignment 

(V A ), and the rating o f driving difficulty. Detailed definitions of these three 

variables are shown in the  report by Kulakowski et al. (1990b). The driving 

difficulty index is then form ulated by a unweighted sum of these variables as 

shown below:

DDI = rating) + (VA rating) + (DD rating)) (6.15)

•  A ccident Risk Index

Frequently, situations are encountered in which no precise m easurem ents 

or inform ation on objects are available and comparisons am ong the objects must
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be m ade. T he subjective assignment of weights to the objects is a natural way to 

solve the problem . However, consistent assignments o f the weights may not 

always be possible. Saaty’s (1977) eigenweight m ethod provides a solution to this 

kind of problem . The application of this m ethod to obtain an accident risk index 

was initiated by formulating a pair-wise com parison matrix of the  th ree  indices— 

A EI, SNI, and DDI. A  scale from 1 to 9, representing the intensity o f importance, 

was chosen for each pair o f indices. It is defined (Saaty 1977) that a rating of 1 

on the scale stands for equal importance of the two indices; 3 represents weak 

im portance-one  index is slightly favored over another one; 5 is called strong 

im portance-one  index is strongly favored over the other index; 7 is called 

dem onstrated  im portance-one index is strongly favored and its dom inance is 

dem onstrated  in practice; and 9 represents absolute im portance-one  index is 

absolute in its im portance over the other. The positions 2, 4, 6, and 8 are 

in term ediate ratings.

A ppropriate  weights can be obtained from a set o f norm alized eigenvector 

corresponding to  the maximum real eigenvalue of the pair-wise comparison 

matrix. T he  main requirem ent to assure consistent assignments of the weights is 

that the maximum real eigenvalue of the pair-wise comparison matrix must be 

equal to o r very close to the dimension of the comparison matrix. For the 

problem  o f estimating the risk o f wet pavem ent accidents, the scales for the th ree  

indices were subjectively selected based on engineering judgem ent. The rating 

selected for SNI was betw een the weak im portance and the strong im portance
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over the A E I and was selected as possessing dem onstrated im portance over the 

DD I; A E I was selected a  rating between the  equal im portance and the w eak 

im portance over the D D I. The pair-wise comparison m atrix was then form ulated 

(see table 6.1).

T able 6.1. Pair-wise comparison matrix.

Index AEI SNI DDI

AEI 1.0 0.25 2.0

SNI 4.0 1.0 7.0

DDI 0.5 0.143 1.0

T he maximum eigenvalue of the comparison m atrix was 3.002, which is veiy 

close to the dimension of the matrix, 3. T he  corresponding normalized 

eigenvector was then determined:

A EI: w, = 0.187 

SNI: w2 =  0.715 

D D I: w, = 0.098 

Then the  accident risk index was obtained by:

ARli = wxAEl + w2SNI + w$D D l (6.16)

T he hierarchical accident index m ethod was then evaluated on the real data 

set to  obtain  ARI, which is called WPI for this wet pavem ent accidents problem ,
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for each site. A  sorting procedure was carried out on the obtained W PI’s to 

prioritize the accident potential with respect to the num ber of wet accidents in 

1986-1988. Results are shown in figure 6.11. Care should be taken  when 

com paring the predicted W PI’s with the actual num ber of wet accidents since they 

are  not in the same scale. Thus, figure 6.11 is shown to provide an implication of 

this m ethod.

6.3.4. M odified Empirical Bayes Approach

In general, because of significant differences in traffic conditions that exist 

on different highway sections, it is desirable that the various highway sections be 

grouped into classes that should have similar accident rates and then  be subjected 

to an empirical Bayes procedure as separate classes. Effective use o f this 

procedure will require that each class have a large num ber of sections. These are, 

o f course, conflicting recom m endations, and some com prom ise m ust be made.

T he results of com puter simulation in chapters 3 and 4 showed that the class size 

should be a t least 60 (and preferably more than 100). W hen these procedures are 

applied  to  the highway sections of an  entire state, this requirem ent can be easily 

attained. For the  Pennsylvania data  set the entire group of 308 highway sections 

is trea ted  as one class because of the relatively small size of the d a ta  set. The 

results of applying the modified A A  procedure include the maximum likelihood,
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and the two new estim ators are presented in tabie 6.2. Table 6.2 indicates that 

the new estim ators have provided some im provem ent over the modified A A  

procedure; additionally, all of the empirical Bayes procedures perform ed 

considerably be tter than the maximum likelihood. It should be noted that the  true 

accident ra te  for each site of interest, based on the assum ption of a Poisson- 

gam m a m odel for the occurrence of the accidents, can never be known precisely. 

Thus, for this evaluation, the errors in predicting the num bers o f wet pavem ent 

accidents w ere used in the sum of absolute errors loss function. It should be also 

noted that the AA procedure without the modification would have resulted in « =

-38.74, and accordingly an & o f 1*5 was used in this evaluation. An exploratory 

analysis of the real data  set using the rule o f fixed value of a  is shown in table 6.3. 

This analysis provides evidential support for the selected m odified rule in chapters 

3 and 4.

A  sorting procedure was then carried out on the estim ated results from  the 

modified A A  procedure and two new estim ators to prioritize the predicted 

num ber of w et pavem ent accidents in ascending order. T he results are shown in 

figures 6.12, 6,13, and 6.14. As these figures illustrate, the predicted num ber of 

wet accidents smoothly follows the increasing trend of actual wet accidents. This 

reveals that the  modified empirical Bayes procedures are effective approaches to 

the estim ation of accident potential for road sites.
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Table 6.2. Results of evaluation on the real data set.

Estimator Sum of Absolute Errors

MLE: Maximum Likelihood 535.12

AA: Modified Arnold Antle 453.98

LI: New Estimator ^ = ( a p -  0.21 ) 438.56

L2: New Estimator = o.92( ) 431.82

Table 6.3. Results of A A  procedure using different values of a.

a Value 1.0 1.5 2.0 3.0 5.0

Sum of Absolute Errors 454.85 453.98 457.68 467.85 486.84
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Figure 6.12. The prioritized num ber of wet accidents using the 
modified A A  procedure (1986-1988).
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6.3.5. Knowledge-Based Model A pproach

Two im portant features of the knowledge-based m odel developed in 

chap ter 5 need  to be pointed out before proceeding with the evaluation. First, the 

knowledge-based m odel can be used to predict the accident potential, a 

probability interval in which a  traffic accident is likely to  take place, for a  site of 

interest if the m easurem ents of the attributing factors becom e available. In 

reality, difficulties exist in defining and collecting the driver/vehicle information. 

Second, the calculated belief interval representing the accident potential for the 

road  site o f interest does not specifically refer to any one type of accident.

For the real data set provided by PennD O T, data  m easurem ents are 

available for the roadway and traffic characteristics only. Consequently, the 

evaluation of the knowledge-based model will concentrate on predicting the 

accident potential for roadway sections, that is, calculating the belief interval for 

the  proposition of the bad roadway section. It should be also noted that due to 

the  absence of driver/vehicle information, the calculated belief interval for the 

proposition of bad roadway section represents solely the portion of total belief 

com m itted to  the roadway section. It may not be used for predicting the num ber 

o f accidents occurring in the future. H ence, a site identified as a bad roadway 

section with a high degree of belief does not necessarily have a large num ber of 

accidents. In order to evaluate the model on the real da ta  set, it was decided that 

the  wet pavem ent index should be defined as:
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(6.17)

w here WPI-1 and WPI-2 are the lower and upper bounds of W PI, respectively; 

while Bel-1 and Bel-2 are  the lower probability and the upper probability o f the 

belief interval, respectively. The converting factor 10 was used to comply with the 

confirm ation scale set in the questionnaire shown in appendix A.

It is noted that the lower probability o f the calculated belief interval for the 

real data  set ranges from  0.09 to  0.28 while the upper probability o f the belief 

interval ranges from 0.15 to  0.45. Histograms of these two probabilities are  shown 

in figures 6.15 and 6.16.

Since the proposition of bad roadway section is com bined from three 

bodies o f evidence, the bad PC, the bad GC, and the bad TC, a high degree o f 

belief o f a  bad roadway section implies that at least one of its bodies of evidence 

is in bad condition. This provides a simple and effective way to  identify significant 

casual factors.

F or the purpose of identifying accident-prone road sites, the  belief intervals 

for the  road  sites, which represent the latent accident potential o f a traffic 

accident, w ere used to prioritize the road sites. However, a  critical value of the 

accident potential must be determ ined. According to the accident records 

reported  by the Accident R ecord System of PennD O T, shown in figure 6.17, the 

roadway- and environm ent-related factors in the period of 1985-1989 account for 

only 13.2% of all accidents. Definitions of these factors are  shown in M ason e t al.
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Figure 6.15. Histogram of the lower accident probabilities for roadway sections
in Pennsylvania in 1983-1985.
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Figure 6.16. Histogram of the upper accident probabilities for roadway sections
in Pennsylvania in 1986-1988.
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1 0 0 %

Total Factors (1 ,016,048)

83.1 %

Driver-Related Factors (844,107)

3.7 %

Vehicle-Related Factors (37,694)
1 -

J

6.3 %

Roadway-Related Factors (63,659) J
6.9 %

Environment-Related Factors (70,588)□
Source: Accident Record System, Pennsylvania Department of Transportation.

Figure 6.17. Schematic diagram of the factors in all accidents
in Pennsylvania (1985-1989).
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(1991). This finding was therefore used as a  basis to determ ine the critical value 

o f the accident potential o f road sites. The belief intervals o f the driver, vehicle, 

and roadway section factors were then calculated. T he results are displayed in 

table 6.4. It may be noted  that the belief interval for the  proposition o f bad 

roadw ay section is [0.025, 0.189]. Based on this belief interval, a  road site is 

identified to be hazardous when the lower probability o f its belief interval is 

g rea ter than 0.189. Frankly speaking, this critical value is not absolute. It can be 

changed when new evidence becomes available. A  sorting procedure is then 

carried  out on the estim ated W PI's to prioritize the road sites. Results a re  shown 

in figure 6.18.

T able 6.4. Calculated belief intervals for the factors in a traffic accident.

Traffic Accident m(A) Bel-1 Bel-2

Bad Roadway Section 0.132 0.025 0.189

Poor Driver 0.831 0.805 0.969

Poor Vehicle 0.037 0.006 0.170

Source: Accident Record System, Pennsylvania Department o f Transportation.

6.4. A  Com parison of the Methodologies

A fter evaluating those developed methodologies on the real data  set, a 

com parison was m ade to  determ ine the best m ethod for the wet accident problem .
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Order of Sites
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Figure 6.18. The results of the knowledge-based model approach.
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Basically, the criteria to justify these methodologies are based on their 

estim ation efficiency and/or based on subjective judgem ent. The classical 

regression methods, the direct Bayesian regression method, and the modified 

empirical Bayes procedures can be justified from their estim ation efficiency. O n 

the other hand, the hierarchical accident index m ethod and the knowledge-based 

m odel approach would be justified subjectively.

The classical linear and nonlinear additive regression m ethods, as discussed 

earlier, produce negative estimates for the num ber of accidents. Hence, these two 

m ethods are  not considered. The nonlinear multiplicaptive model using the SAS 

NLIN regression procedure or the direct Bayesian regression procedure, however, 

provides a feasible approach to the wet pavem ent accident problem . Table 6.5 

presents a com parison of all of the developed methods.

It is noted that the  sum of absolute error betw een the actual and the 

predicted num ber o f wet accidents when using the SAS NLIN procedure is 512.72, 

whereas the sum of absolute error for the direct Bayesian regression procedure is 

539.56. A  slightly be tter perform ance of the SAS NLIN procedure is observed.

W hen the SAS NLIN procedure is com pared with the m odified empirical 

Bayes procedures, it is observed from the table 6,5 that the modified Bayes 

procedures, especially the two new median estim ator L I and L2, are  far better 

than the SAS NLIN procedure.

T he hierarchical accident index m ethod is a com bination of fuzzy reasoning 

technique and probabilistic type of approach. It calculates the W PI’s based on the
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Type of 
Approach Methods

Sum of 
Absolute 

Errors Output Required Data

Direct Bayesian 
Regression 539.56 Predicted

Accidents

Accident Records 
and Factor 

Measurements

Maximum
Likelihood 535.12 Predicted

Accidents

Accident Records 
and Factor 

Measurements

Objective

Nonlinear Procedure 
(SAS NLIN) 512.72 Predicted

Accidents

Accident Records 
and Factor 

Measurements

Modified AA  
Procedure 453.98

Predicted 
Accidents 

(Accident Rates)

Accident Records 
and Factor 

Measurements

New Median 
Estimator LI 438.56

Predicted 
Accidents 

(Accident Rates)

Accident Records 
and Factor 

Measurements

New Median 
Estimator L2 431.82

Predicted 
Accidents 

(Accident Rates)

Accident Records 
and Factor 

Measurements

Combined Hierarchical 
Accident Index N/A* Accident Risk

Accident Records 
and Factor 

Measurements

Subjective Knowledge-based
Model N/A*

Accident Risk 
(Significant 

Factors)

Expert Knowledge 
and Factor 

Measurements

*: Not applicable.
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accident records and the m easurem ents of roadway and traffic characteristics. On 

the o ther hand, the knowledge-based model approach calculates the total belief 

th a t is com m itted to the proposition of a bad roadway section for each location of 

interest. A  com parison of these two methods with the Bayesian m ethods is 

difficult since the W PI’s obtained by these two methods are the accident potential 

for the  road sites but not the predicted num ber of wet pavem ent accidents. It is 

observed that, from figure 6.11, the hierarchical accident index m ethod perform ed 

alm ost as well as the modified empirical Bayes procedures shown in the figures 

6.12, 6,13, and 6.14.

The main disadvantage of the empirical Bayes procedures, however, is that 

the  procedures rely on accident records and data  m easurem ents of the roadway 

sections to  estim ate the param eters in the prior distribution. If those data are  not 

available, the empirical Bayes m ethods cannot be applied. T he sam e drawback 

exists in the hierarchical accident index m ethod. This disadvantage, however, does 

not exist in the knowledge-based model approach, since an expert knowledge base 

was constructed. The m odel provides a simple and easy way to  identify bad 

roadw ay sections and significant causal factors through the knowledge base. Its 

perform ance is not fully justified on this real da ta  set. Table 6.6 presents a 

com parison of identifying significant causal factors for the m odified empirical 

Bayes procedures, the hierarchical accident index method, and the  knowledge- 

based  model approach. Since all o f the factor effects are rep resen ted  by only one 

param eter, the Poisson m ean the wet vehicle exposure (defined in equation
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Table 6.6. Results of identifying significant causal factors on the real data set.

M ethods Significant Factors

M odified A A  Procedure W et Vehicle Exposure (W M )

New M edian Estim ator L I W et Vehicle Exposure (W M )

New M edian Estim ator L2 W et Vehicle Exposure (W M )

Hierarchical Accident Index SN, DD

Knowledge-based M odel D river, SN, TW, D D

6.1) is considered to be significant in estimating the accident risk when the 

modified empirical Bayes procedures were used. The SN and D D  are considered 

to  be significant when using the hierarchical accident index m ethod. Based on 

calculated belief intervals and belief function num bers p resen ted  in chap ter 5, the 

driver, SN, TW , and D D  are identified as significant factors for a  traffic accident.

6.5. Summary

In this chapter, a  case study of developing a  wet pavem ent index to 

evaluate the  accident risk o f wet pavem ent accidents is presented. Several 

m ethodologies including the classical regression methods, the direct Bayesian 

m ethod, the  hierarchical accident index method, the m odified empirical Bayes 

procedures, and the knowledge-based model were developed and evaluated using 

the  real da ta  set provided by PennD O T. Essentially, th ree  types o f approach  are
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considered. O ne is the  objective (direct) type regression m ethod and Bayesian 

m ethods; the second is the combined (indirect) type hierarchical accident index 

m ethod, and the third is the subjective (indirect) type knowledge-based model. 

Based on an absolute e rro r loss function, the modified empirical Bayes procedures 

a re  considered to  be  superior to  the other approaches for the risk assessment 

problem . However, the knowledge-based m odel approach should be considered if, 

in addition to predicting accident risk for roadway sections, an identification of 

significant causal factors for an accident is desired. A  further justification of the 

capability o f the knowledge-based model can be carried out if the driver/vehicle 

inform ation is available.
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In this research, three types of approach to the problem  of identification 

and risk assessment for a traffic accident were exp lored-one is called an objective 

type of approach, which includes classical regression techniques, a direct Bayesian 

regression m ethod, and modified empirical Bayes procedures; the second is a 

subjective type of approach using a developed knowledge-based m odel; the third 

is a com bined (hybrid) approach using a hierarchical accident index m ethod that 

was proposed in the thesis proposal. A  summary of the developm ent of new 

m ethods and conclusions based on research findings are  given in the  following 

subsections.

7.1. Summary

In this thesis, four new methods--the m odified A A  procedure, the two new 

m edian estim ators, the knowledge-based model, and the hierarchical accident 

index m ethod—were developed to assess the accident risk and identify significant 

causal factors for a traffic accident.

T he developm ent work begins with an introduction of the  Bayesian 

m ethods and the belief function theory (Shafer 1976) in chapter 2. The problem
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o f nonpositive and large values of param eter a encountered in the A A  procedure 

was solved using a modified rule presented in chapter 3. T he m odified rule, a  =  

1.5 for a  < 0 and a  =  10 for a  > 10, proved to be very effective and efficient in 

estim ating the accident ra te  under simulated conditions. The random  effect of 

vehicle exposure represented by a Weibull random  variable in the com puter 

sim ulation was investigated. A  sample size o f 100 was recom m ended for 

param eter estimation.

In chapter 4, two new m edian estim ators for a  gam m a distribution were 

developed for the traffic accident problem  in which an absolute e rro r loss function 

is considered. Based on com puter simulation, the values of the two constants ke 

and kt used to determ ine the two new m edian estimators, L I and L2, were 0,21 

and 0.92. An evaluation of the L I and L2 on a sim ulated data  set reported  by 

M orris e t al. (1991) indicated that the L I and L2 are very efficient. If the median 

estim ators and the modified rule presented in chapter 3 are  combined, a new rule 

for the  A A  procedure can be represented by setting & = 1.5 if a  < 0.3 anci

estim ating 6  by the equation p = SY j  (1.5*SM); if& is g reater than  10, then  & 

would be  set equal to  10 and, accordingly, 6  would be estim ated by

p = SY I

A  knowledge-based model was developed in chapter 5 to  elim inate the 

disadvantage of relying on accident records and m easurem ent data  to  assess the 

accident risk. The m odel is based on a collected expert knowledge base and the 

belief function theory. A  questionnaire shown in appendix A  was designed to
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collect the expert knowledge. The model can provide a degree of belief for a 

single factor in a proposition or a combined degree o f belief for a traffic accident. 

It can be updated when additional expert knowledge is available. The m odel can 

be used to identify significant causal factors by using a calculated belief function 

num ber for each factor. The uncertainties introduced by hum an experts in 

constructing the model, however, a re  an im portant draw back to the m odel.

V alidation of these newly developed methods in addition to classical 

regression m ethods was perform ed in chapter 6 on a  real data set provided by 

Pennsylvania D epartm ent of Transportation. The data  set contains 308 highway 

sections in Pennsylvania for the period of 1983-1988. Accident records and 

m easurem ents o f site-specific characteristics such as SN, R U T, IPM, and so on, 

were available for the  6-year period. Results of the validation showed th a t the 

m odified empirical Bayes procedures are  superior to the  other approaches based 

on an absolute e rro r loss function. The hierarchical accident index m ethod  

perform ed alm ost as well as the modified empirical Bayes procedures in 

estim ating the accident risk of wet pavem ent accidents. T he knowledge-based 

m odel can predict accident risk and identify significant causal factors for w et 

accidents simultaneously. Its perform ance can be fully justified if driver/vehicle 

inform ation is available.
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7.2. Research Findings and Conclusions

A  num ber of research findings presented in this thesis can be summarized 

as follows:

1. Classical linear regression methods are  not suitable for risk assessment 

in traffic event systems due to the fact that a given system is nonlinear 

and these m ethods may produce negative estimates.

2. M odifications to  the direct Bayesian m ethod are necessary in order to 

improve its com putational efficiency and accuracy.

3. The hierarchical accident index m ethod provides an alternative means 

for determ ining the accident potential for road sites by using both 

accident records and roadway and traffic characteristics. It perform s 

almost as well as the modified empirical Bayes procedures on the real 

da ta  set.

4. T he fundam ental assumptions m ade in developing the  modified 

empirical Bayes procedures are appropriate  for the traffic event 

system.

5. Based on an absolute error loss function, the m odified empirical Bayes 

procedures perform  almost as well as the ideal Bayes procedure as 

long as the sam ple size of the sim ulated data is equal to  o r g reater 

than 100. It should be noted that the  ideal Bayes procedure  is an 

optim al estim ator when the prior distribution is precisely known.
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6. W hen considering the random effect of vehicle exposure, the m odified 

empirical Bayes procedures proved to  be effective for different levels 

o f vehicle exposure during com puter simulation.

7. The modified empirical Bayes procedures result in a sm aller sum  of 

absolute errors between the actual and the predicted num ber of wet 

accidents than the o ther methods on the real data set.

8. T he SN of each location in the real data set rem ained unchanged

during the 1983-1988 period. This potentially increased the difficulty of 

identifying significant causal factors for the wet pavem ent accident 

problem.

9. The knowledge-based model provides detailed inform ation on the 

occurrence of traffic accidents. It predicts the accident risk for traffic 

accidents. It is suitable for daily or routine surveys o f highway systems 

to identify significant causal factors or hazardous road  sites.

10. The knowledge-based model can be updated and expanded when new 

bodies o f evidence are  available.

11. Based on the evaluation of the real data  set, wet vehicle exposure is

considered to  be significant for the modified empirical Bayes

procedures. The SN and DD w ere identified as significant factors in 

estimating the accident risk when the  hierarchical accident index 

m ethod was applied. The significant causal factors a re  driver, SN, TW , 

and DD when using the knowledge-based model approach.
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Based on the findings stated above, it is concluded that the modified 

empirical Bayes procedures and the knowledge-based model are the methods that 

should be considered for the problem of identification and assessment of risk in 

traffic event systems. The modified empirical Bayes procedures should be used 

when objective inform ation-accident records and measurements of roadway and 

traffic characteristics--is available. However, the knowledge-based model 

approach should be applied if the objective information is not available.

7.3. Recom m endations for Future Research

From the results of the simulations and the applications of the different 

methods for estimating the risk of a wet pavement accident using the Pennsylvania 

data, the following recommendations can be formulated:

1. The highway sections should be grouped into classes that num ber at 

least 60 each, where the highway sections within classes are  as similar 

as possible in the properties that affect the risk of a wet pavem ent 

accident. The quality of the m easurements such as SN, TW, ADT, 

RU T, AGE, and so on, should be improved.

2. The new estimators presented in this thesis, LI and L2, perform ed 

be tter than other known estimators on sets of computer-simulated and 

actual accident data. M ore research on robustness should be 

conducted to fully evaluate these new estimators.
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A study of the robustness of the selected model (gamma-Poisson) 

should be performed. Perhaps some procedures for model 

development and evaluation should be developed. This may be 

especially true in regard to the form for the prior distribution.

M ore research should be conducted on the knowledge-based model to 

explore and evaluate its capabilities and limitations. The feasibility of 

expanding the knowledge-based model to become an expert system 

should be investigated.
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PROPOSITION: ACCIDENT POTENTIAL FOR THE HIGHWAY
SECTION IS HIGH

Body of Evidence
Scale of Confirmation 

(0-10)
Scale of 

Disconfirmation(0-10)

Pavement condition (PC) is bad.

Geometric condition (GC) is bad.

Traffic condition (TC) is bad.

Note:
1. The scale of confirmation (or disconfirmation) represents an assigned degree of 

support to each body of evidence that has a (or has no) contributing effect on the 
proposition. It is a scale of increasing effect, that is, a rating of 10 represents the 
strongest effect on the proposition.

2. There is no compelling reason to assign a scale of disconfirmation (or confirmation) 
to each body of evidence, although it would be helpful. If you have no idea what 
rating to assign on this scale, please assign a rating of zero.
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PROPOSITION: ACCIDENT POTENTIAL FOR DRIVER /VEHICLE
IS HIGH

Body of Evidence Scale of Confirmation 
(0-10)

Scale o f Disconfirmation 
(0-10)

Driver’s experience is good

Driver’s experience is fair.

Driver’s experience is little.

Driver's personality is normal.

Driver's personality is nervous.

Driver’s personality is aggressive.

Driver is tired or sleepy.

Driver is drug or aloohol influenced.

Driver is alert

Vehicle condition is good.

Vehicle condition is fair.

Vehicle condition is bad

Note:
1. The scale o f confirmation (or disconfirmation) represents an assigned degree of 

support to each body of evidence that has a (or has no) contributing effect on the 
proposition. It is a scale of increasing effect, that is, a rating of 10 represents the 
strongest effect on the proposition.

2. There is no compelling reason to assign a scale o f disconfirmation (or confirmation) 
to each body of evidence, although it would be helpful. If you have no idea what 
rating to assign on this scale, please assign a rating of zero.
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PROPO SITION: PA VEM ENT CO N D ITIO N  (PC) IS BA D

Body of Evidence Scale of 
Confirmation (0-10)

Scale of 
Disconfirmation (0-10)

The Unacceptable 
Value (or Range)

Skid resistance is low.

Rutting is high.

Roughness is high.

Pavement age is high.

Note:
1. The scale of confirmation (or disconfirmation) represents an assigned degree of 

support to each body of evidence that has a (or has no) contributing effect on the 
proposition. It is a scale o f increasing effect, that is, a rating of 10 represents the 
strongest effect on the proposition.

2. There is no compelling reason to assign a scale of disconfirmation (or confirmation) 
to each body o f evidence, although it would be helpful. If you have no idea what 
rating to assign on this scale, please assign a rating of zero.

3. The unacceptable value (or range) for each body o f evidence is designed to estimate 
its critical value (or range).
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PROPOSITION: SKID RESISTANCE IS LOW

148

Ranges of Skid Resistance Degree of Confirmation 
(0-10)

Degree of Disconfirmation 
(0-10)

< 20

2 0 -2 5

25 - 30

30 - 35

35 - 40

> 40

PRO PO SITIO N : RU TTIN G  IS H IG H

Ranges o f Rutting (in) Degree o f Confirmation 
(0-10)

Degree of Disconfirmation 
(0-10)

> 1.0

0.5 - 1.0

< 0.5
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PROPOSITION: ROUGHNESS IS HIGH

Ranges o f Roughness 
(in/mi, IPM)

Degree of Confirmation 
(0-10)

Degree o f Disconfirmation 
(0-10)

> 300

250 - 300

200 - 250

150 - 200

100 - 150

<  100

PRO PO SITIO N : PA V EM EN T A G E  IS H IG H

Ranges o f Pavement Age 
(years)

Degree of Confirmation 
(0-10)

Degree of Disconfirmation 
(0-10)

>  15

10 - 15

5 - 10

2 - 5

< 2



www.manaraa.com

150

PRO PO SITIO N : T R A FFIC  CO N D ITIO N  (TC) IS B A D

Body o f Evidence Scale of 
Confirmation (0-10)

Scale of 
Disconfirmation (0-10)

The Unacceptable 
Value (or Range)

Average daily traffic 
is high.

Weather condition 
is bad.

Note:
1. The scale of confirmation (or disconfirmation) represents an assigned degree of 

support to each body of evidence that has a (or has no) contributing effect on the 
proposition. It is a scale of increasing effect, that is, a rating o f 10 represents the 
strongest effect on the proposition.

2. There is no compelling reason to assign a scale o f disconfirmation (or confirmation) 
to each body o f evidence, although it would be helpful. If you have no idea what 
rating to assign on this scale, please assign a rating o f zero.

3. The unacceptable value (or range) for each body o f evidence is designed to estimate 
its critical value (or range).
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PROPOSITION: AVERAGE DAILY TRAFFIC IS HIGH

Range of 
Average Daily Traffic

Degree of Confirmation 
(0-10)

Degree of Disconfirmation 
(0-10)

> 15,000

10,000 - 15,000

6,000 - 10,000

3,000 - 6,000

1,000 - 3,000

< 1,000

PROPO SITION: W EA TH ER CO N D ITIO N  IS BAD

Range of Wet Time (TW) Degree of Confirmation 
(0-10)

Degree of Disconfirmation 
(0-10)

> 2 0 %

15% - 20%

10% - 15%

5% - 10%

<  5%

Note: TW represents the percentage o f time when the road surface is wet. It includes rainy, 
foggy, and snowy days.
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PROPOSITION: GEOMETRIC CONDITION (GC) IS BAD

Body of Evidence Scale of Confirmation (0-10) Scale of Disconfirmation (0-10)

HC is slight

HC is moderate.

HC is severe.

VA is slight

VA is moderate.

VA is severe.

DD is slight

DD is moderate.

DD is severe.

Notes:
1. HC =  horizontal curvature; VA =  vertical alignment; and DD =  driving difficulty. 

Detailed definitions of these three quantities are shown in tables A 1  through A 3  
(Kulakowski et al. 1990b).

2. The scale o f confirmation (or disconfirmation) represents an assigned degree of 
support to each body of evidence that has a (or has no) contributing effect on the 
proposition. It is a scale of increasing effect, that is, a rating o f 10 represents the 
strongest effect on the proposition.

3. There is no compelling reason to assign a scale of disconfirmation (or confirmation) 
to each body of evidence, although it would be helpful. If you have no idea what 
rating to assign on this scale, please assign a rating o f zero.
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Table A.l. Horizontal curvature rating.
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Rating

Criterion Slight Moderate Severe

Warning
Signs

No curve 
signs present

Curve signs with 
advisory speed plates

Presence of the following curve 
warning signs:

W1-1R or 1L = Turn sign where 
recommended speed is 30 mi/h or 
less.

W1-3R or 3L =  Reverse turn sign 
used to mark two turns in opposite 
directions that are separated by a 
tangent of less than 600 ft.

W1-5R or 5L =  Winding road sign 
used where there are three or more 
curves separated by a tangent o f 600 
ft.

W l-6 = Large arrow sign used to 
give notice of a sharp change of 
alignment in the direction of travel.

W l-8 =  Chevron alignment sign 
used to give notice o f a sharp 
change of alignment with the 
direction o f travel.

W1-20R or 20L =  Horseshoe curve 
sign used to mark a curve that 
produces a central angle o f 135° or 
more. (Pennsylvania Title 67, Pub. 
68 — official traffic control devices)

Degree of 
Curvature

< 3° 4° - 8" >  8°

Other

No evidence 
of braking or 
slowing down 

upon 
entering 

curve

Evidence of hard braking, tire 
markings, on pavement or shoulder 
while rounding the curve; or an 
unexpected, moderate curve by 1/2 
mile or more of tangent/flat curves.



www.manaraa.com

Table A.2. Vertical alignment rating.
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CRITERIA

RATING

SLIGHT MODERATE SEVERE

Percent Gradient Gently rolling, flat 
grades (<  2%)

Moderate grades 
(2% - 5%) Steep grades (>  5%)

Available Sight 
Distance

Unlimited sight 
distance (>  1000 ft)

Somewhat 
restrictive sight 
distance (400 • 
800 ft)

Very restrictive sight 
distances (<  400 ft)

Length of Grade

Length of grade has 
little effect on truck 
speeds (< 5 mi/h 
speed differential)

Length of grade 
has some effect 
on truck speeds 5 
to 15 mi/h speed 
differential)

Length o f grade has a 
major effect on truck 
speeds (>  15 mi/h 
speed differential)
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Table A.3. Driving difficulty rating.
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Rating

Criterion Slight Moderate Severe

Access Control in 
Study Segment

Less than 10 access 
points per segment

Between 10 and 30 
access points per 
segment

More than 30 access 
points per segment

Turn Lane 
Presence

Separate turn lanes 
or turns not 
permitted

Center lane left turn
Turns made from thru 
lanes

Surrounding Land
Use

Primarily
residential/farming 
land use

Residential/commercial 
land use

Commercial 
characteristics of strip 
shopping development 
in urbanized areas. In 
rough topography, 
characterized by 
farming activity along 
the roadside 
environment

Signalization Uncontrolled
intersections

Less than three 
signalized intersections 
within segment

Major intersections 
controlled by traffic 
signals at >  3 
locations within 
segment
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Appendix B

A  G R A PH IC A L IN TER PR ETA TIO N  O F  T H E  
KN OW LEDGE-BASED M O D E L

In this appendix, figures B .l through B.5 represent calculated belief 

intervals and belief function num bers for the propositions in the second and the 

third level o f the knowledge-based model, respectively. Figure B.6 depicts the 

degree of belief of a significant causal factor, low skid resistance (SN), in the 

proposition of bad  pavem ent condition (PC). For the proposition o f bad 

geom etric condition (GC), there is not much difference in the degree of belief 

betw een one factor and the next factor. Therefore, only figure B.7 that shows the 

degree of belief for driving difficulty (DD ) is provided. For the factors in the 

proposition of bad  traffic condition (TC), the factor o f high percentage of wet 

tim e (TW ) possesses a  higher degree of belief than  the factor of high average 

daily traffic (A D T). Figure B.8 shows the degree of belief for high TW .
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Belief Intervals in Bad Roadway Section

BadTC

Bad GC

Bad PC

P

jmmsssmmmsmf
S

i¥- - - - - - - - - - - -t h- - - - - - - - - - - - t----------- 2.------------- - - - - - - - - - - - - r'
0  0.1 0 .2  0 .3  0 .4  0 .5

Degree of Belief
o.s

Lower Probability V/A  Upper Probability

Figure B.l. Calculated belief-intervals for the factors in the
proposition of bad roadway section.
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Belief Intervals in Bad Driver/Vehicle

Poor Vehicle Condition 
Fair Vehicle Condition 

Good Vehicle Condition 
Alert Driver 

Drug/Alch. Influ. Driver 
Tired Driver 

Aggressive Person 
Nervous Person 

Normal Person 
inexperienced Driver 

Fair Experienced Driver 
Experienced Driver

0 .2  0 .3  0 .4  0 .5
Degree of Belief

0.6

Lower Probability Upper Probability

Figure B.2. Calculated belief intervals for the factors in the
Proposition of bad driver/vehicle condition.
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Belief Function Number

Figure B.3. Belief function numbers for the factors in the
proposition of bad pavement condition.
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0  0 .0 5  0.1 0 .1 5  0 .2  0 .2 5  0 .3

Belief Function Number

Figure B.4. Belief function numbers for the factors in the
proposition of bad geometric condition.
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Figure B.5. Belief function numbers for the factors in the
proposition of bad traffic condition.
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Figure B.6. Degree of belief for low skid resistance (SN).
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0 .9 -

0 .0 -

0 .7 -

0 . 6 -

0 .5 -

0 .4 -

0 .3 -

0 . 2 -

0 .1-

I

ModerateSlight Severe
DD Level

Figure B.7. D egree of belief for driving difficulty (DD ).
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0 .2 -

0 . 1-

<5% 5%-10% 15%-20% > 20%
TW (%)

Figure B.8. Degree of belief for high percentage of wet time (TW).
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Appendix C 

A  R EG RESSIO N  ANALYSIS O F TH E R E A L  TR A FFIC  
A CCID EN T DATA SET

C .l. L inear Regression Results for 1983-1985 D ata Set

•  The regression equation for a to ta l of 12 factors is

WA = 0.51 + 4.44 SL - 0.0538 SN + 0.317 RUT + 0.00157 [PH - 0.00234 AGE + 0.289 TW - 0.0532 PS 
+0.000114 ADT - 0.0519 TP - 0.070 HC - 0.175 VA + 0.335 DD

Predictor Coef Stdev t-ra t io P
Constant 0.508 1.959 0.26 0.796
SL 4.439 1.038 4.28 0.000
SN - 0 . 05380 0.01591 •3.38 0.001
RUT 0.3174 0.6801 0.47 0.641
I PH 0.001569 0.003962 0.40 0.692
AGE •0.002343 0.008887 -0.26 0.792
TW 0 . 2893 0.1673 1.73 0.085
PS - 0 . 05322 0.01611 -3.30 0.001
ADT 0.00011360 0.00002432 4.67 0.000
TP - 0 . 05194 0.01837 -2.83 0.005
HC -0 .0701 0.1722 -0.41 0.684
VA -0 .1748 0.1963 •0.89 0.374
DD 0 .3354 0.1835 1.83 0.069

s = 2.198 R-sq = 26.ZX R-sq(adj) ■ 23. Z X

• Analysis of Variance

SOURCE DF SS MS F
Regressioni 12 505.555 42.130 8.72
Error 295 1424.715 4.830
Total 307 1930.270

SOURCE OF SEQ SS
SL 1 57.868
SN 1 39.941
RUT 1 1.289
I PM 1 0.460
AGE 1 17.902
TW 1 34.835
PS 1 90.421
ADT 1 190.411
TP 1 48.760
HC 1 3.593
VA 1 3.933
DD 1 16.141

> Lack of f i t  test

Passible interactions with variable ADT (P > 0 .0 1 1 )  
Possible interactions with variable TP (P = 0.063) 
Possible lack of f i t  at outer X-values (P = 0.000) 
Overall tack of f i t  test is s ignificant at P > 0.000

• STEPWISE REGRESSION OF WA ON 12 PREDICTORS, WITH N = 308
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STEP
CONSTANT

1
1.1693

2
3.6024

3
1.7683

4
3.5882

5
3.6344

6
1.1236

7
-0.1319

ADT 0 
T-RATIO

.00014
6.17

0.00014
6.46

0,00014
6.72

0.00014
6.76

0.00014
6.93

0,00014
6.71

0.00012
5.72

PS
T-RATIO

-0.057
•3.68

-0.061
-4.00

-0.067
-4.43

•0.058
-3.86

-0.062
-4.09

•0.054
-3.42

SL
T-RATIO

4.0
3.79

4.3
4.14

4.4
4.25

4 .3
4.16

4.4
4.25

SN
T-RATIO

-0.045
-3.20

-0.047
-3.41

•0.060
-3.96

•0.056
-3.69

TP
T-RATIO

-0.057
-3.17

•0.058
-3.25

-0.057
-3.21

TW
T-RATIO

0.31
2.01

0.33
2.18

00
T-RATIO

0.34
1.86

S
R-SO

2.37
11.08

2.32
14.8S

2.27
18.69

2.24
21.35

2.21
23.88

2.19
24.90

2.19
25.75

• STEPWISE REGRESSION OF WA ON 10 PREDICTORS, WITH N = 303

STEP
CONSTANT

1
1.112

2
3.702

3
5.661

4
5.732

UH
T-RATIO

1.50
7.47

1.56
7.92

1.58
8.15

1.62
8.49

PS
T-RATIO

-0.061
-4.04

-0.067
-4.47

•0.058
•3.86

SN
T-RATIO

-0.045
-3.25

-0.048
-3.50

TP
T-RATIO

-0.062
-3.48

S
R-SQ

2.31
15.42

2.25
19.71

2.22
22.41

2.18
25.39

Based on the  above results, the statistically significant attributing factors are  
WM, ADT, SN, PS, TP, DD.

* The regression equation for the selected factors is

WA = 5.05 + 1.54 WH - 0.0443 SN - 0.0520 PS - 0.0607

Predictor Coef Stdev t -ra t io P
Constant 5.048 1.040 4.85 0.000
UH 1.5440 0.1991 7.75 0.000
SN -0.04434 0.01393 -3.18 0.002
PS -0.05198 0.01558 -3.34 0.001
TP -0.06073 0.01774 -3.42 0.001
DD 0.2158 0.1773 1.22 0.225
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s = 2.176 R-sq = 25.71 R-sq(adj) = 24.5X

• Analysis of Variance

SOURCE DF SS HS
Regression 5 497.031 99.406
Error 302 1433.239 4.746
Total 307 1930.270

SOURCE DF SEQ SS
UH 1 297.556
SN 1 36.643
PS 1 98.369
TP 1 57.436
0D 1 7.025

• Lack of f i t  test

Possible interactions with variable WH (P = 0.018)
Possible interactions with variable PS {P » 0.000)
Possible interactions with variable TP {P = 0,000)
Possible interactions with variable DD {P = 0.073)
Possible tack of f i t  at outer X-velues IP = 0.000) 
Overall lack of f i t  test is significant at P = 0.000

C.2. Nonlinear Additive Regression Results for 1983-1985 D ata Set

•  The regression equation of the selected factors is

WA = 6.72 * 0.0957 SN - 0.071S PS - 0.127 TP + 0.00860 SN*DD + 0.00061 SN*PS+ 0.00173SN*TP + 1.49 
UH

Predictor Coef Stdev t-ra t io P
Constant 6.720 2.733 2.46 0.014
SN -0.09566 0.07139 -1.34 0.181
PS -0.07150 0.06220 -1.15 0.251
TP *0.12667 0.06669 -1.90 0.058
SN*0D 0.008601 0.004595 1.87 0.062
SN*PS 0.000609 0.001634 0.37 0.710
SH*TP 0.001727 0.001662 1.04 0.300
UN 1.4903 0.2007 7.42 0.000

s *  2.174 R-sq = 26.6X R-sqtadj) = 24. ax

* Analysis of Variance

SOURCE DF SS HS
Regression 7 512.646 73.235
Error 300 1417.623 4.725
Total 307 1930.269

SOURCE DF SEQ SS
SN 1 31.576
PS 1 73.544
TP 1 42.462
SN*DD 1 95,798
SN*PS 1 0.155
SN*TP 1 8.661
UH 1 260.450
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•  Lack of f i t  test

Possible interactions with variable PS (P « 0.000}
Possible interactions with variable TP (P = 0.000)
Possible interactions with variable SN+TP (P = 0.001)
Possible Interactions with variable WH CP «= 0.034}
Possible lack of f i t  at outer X-values (P = 0.000) 
Overall lack of f i t  test is s ignificant at P a 0.000

C.3. L inear Regression Results for 1986-1988 D ata Set

• The regression equation of a tota l 12 factors is

WA = - 6.15 + 3.76 SL - 0.0609 SN + 0.486 RUT + 0.00380 I PH + 0.00674 AGE + 0.695 TW - 0.0536 PS 
+0.000151 ADT - 0.0236 TP + 0.073 HC - 0.105 VA + 0.174 DD

Predictor Coef stdev t -ra t io P
Constant -6.150 3.268 *1.88 0.061
SL 3.759 1.038 3.62 0.000
SN -0.06093 0.01428 -4.27 0.000
RUT 0.4860 0.6781 0.72 0.474
I PH 0.003802 0.003851 0.99 0.324
AGE 0.006743 0.008901 0.76 0.449
TW 0.6955 0.2191 3.17 0.002
PS -0.05359 0.01605 -3.34 0.001
ADT 0.00015108 0.00002408 6.27 0.000
TP *0.02359 0.01890 -1.25 0.213
HC 0.0734 0.1719 0.43 0.670
VA -0.1053 0.1973 •0.53 0.594
DD 0.1735 0.1832 0.95 0.344

S = 2.191 R-sq = 27.9% R-sq(adj) = 25.OX

■ Analysis of Variance

SOURCE DF SS HS F p
Regression 12 549.133 45.761 9.54 0.000
Error 295 H15.78& 4.799
Total 307 1964.919

SOURCE DF SEQ SS
SL 1 31.362
SN 1 73,696
RUT 1 3.696
IPH 1 0.054
AGE 1 24.861
TW 1 68.478
PS 1 64.834
ADT 1 267.291
TP 1 8.721
HC 1 0.194
VA 1 1.441
DD 1 4.305

•  Lack of f i t  test

Possible curvature in  variable VA (P = 0.019) 
Possible lack of f i t  at outer X-values (P = 0.000) 
Overall lack of f i t  test fs s ignificant at P = 0.000

•  STEPWISE REGRESSION OF WA OH 12 PREDICTORS, WITH N = 308
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STEP 1 2 3 4 5
CONSTAHT 0.6826 2.9337 5.3059 -3.5424 ■5.8770

ADT C1.00015 0.00015 0.00015 0.00015 0.00015
T-RATIO 6.80 7.07 7.16 7.14 7.37

PS -0.053 -0.060 -0.057 -0.061
T-RATIO -3.40 -3.91 -3.81 -4.15

SN -0.054 -0.058 -0.064
T-RATIO -3.82 -4.16 -4.61

TW 0.69 0.75
T-RATIO 3.53 3.91

SL 3.8
T-RATIO 3.71

S 2.36 2.32 2.27 2.23 2.19
R-SQ 13.11 16.29 20.12 23.26 26.62

• STEPWISE REGRESSION OF WA ON 10 PREDICTORS, WITH N = 308

STEP 1 2 3 4
CONSTANT 0.6472 3.0174 5.4449 5.4969

UH 1.32 1.36 1.36 1.37
T-RATIO 7.73 8.11 8.30 8.40

PS -0.056 -0.063 -0.056
T-RATIO -3.67 -4.21 -3.72

SN -0.056 -0.057
T-RATIO -4.01 •4.18

TP -0.044
T-RATIO -2.43

S 2.32 2.27 2.22 2.20
R-SQ 16.32 19.86 23.89 25.34

• The regression equation for the selected factors is

WA *  5.35 + 1.35 UH - 0.0568 SN - 0. 0548 PS - 0.0434 TP + 0.047

Predictor Coef Stdev t-ra t io P
Constant 5.351 1.049 5.10 0.000
UH 1.3547 0. 1708 7.93 0.000
SN -0.05679 0.01405 -4.04 0.000
PS -0.05481 0.01578 -3.47 0.001
TP -0.04338 0.01795 -2.42 0.016
DD 0.0467 0. 1795 0.26 0.795

s = 2.204 R-sq -  2S.4X R-sq(adJ) > 24 .IX

•  Analysis of Variance

SOURCE DF SS HS F P
Regression 5 498.256 99.651 20 .52 0.000
Error 302 1466.663 4.856
Total 307 1964.919

SOURCE DF SEQ SS
MVM 1 320.709
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SN 1 61.518
PS 1 87.147
TP 1 28.554
DD 1 0.328

• Lack of f i t  test

Possible interactions with variable PS (P *  0.010) 
Possible interactions with variable TP (P = 0.011) 
Possible lack of f i t  at outer X-values (P = 0.000) 
overall lack of f i t  test is s ignificant at P => 0.000

C.4. N onlinear Additive Regression Results for 1986-1988 D ata  Set

•  The regression equation for the selected factors is

UA = 11.2 - 0.216 SN - 0.179 PS - 0.0954 TP + 0.00217 SN*DD + 0.00340 SN*PS + 0.00137 SNMP + 1.36 
UH

Predictor Coef Stdev t -ra t io P
Constant 11.157 2.755 4.05 0.000
SN •0 . 21563 0.07197 -3.00 0.003
PS - 0 . 17933 0.06283 -2.85 0.005
TP - 0 . 09541 0.06745 -1.41 0.15B
SN*DD 0.002172 0.004627 0.47 0.639
SN*PS 0.003404 0.001649 2.06 0.040
SNMP 0.001368 0.001679 0.81 0.416
WH 1.3592 0.1714 7.93 0.000

s = 2.191 R-sq = 26.7X R-sq(adj) =‘ 25.OX

• Ana lys i s of Variance

SOURCE DF SS HS F
Regression 7 524.191 74.884 15.59
Error 300 1440.728 4.802
Total 307 1964.919

SOURCE DF SEQ SS
SN 1 65.042
PS 1 65.783
TP 1 25.129
SN*0D 1 45.783
SN'PS 1 14.300
SNMP 1 6.210
UH 1 301.943

•  Lack of f i t  test

Possible Interactions with variable PS (P o 0.032)
Possible Interactions with variable TP {P ■ 0.003)
Possible Interactions with variable SNMP (P = 0.019)
Possible Lack of f i t  at outer X-values (P = 0.000)
Overall lack of f i t  test is s ignificant at P = 0.000
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C.5. N onlinear Multiplicative Regression Results

T he following results were obtained from the SAS NLIN procedure (Gauss- 
Newton m ethod)

• The regression equation for the selected factors is

WA = 3318.25(WM**0.661 >(DD**0.11385 ><PS**(-1.387))/<SN**0.4476>

• Analysis of Variance

SOURCE DF SS HS
Regression 4 1838.125 459.531
Error 303 1442.880 4.760
Total 307 1930.269

The R-sq = 1 - Error/Total = 0.252
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