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ABSTRACT

The enormous ﬁumber of accidental deaths associated with motor-vehicle
accidents each year remains a main issue of highway safety. For the assessment of
the accident risk associated with particular highway locations, probabilistic type
empirical Bayes methods have been considered a viable approach. However,
considerations with regard to the adequate sample size, the random effect of
vehicle expaosure, the utilization of both accident histories and measurements of
roadway and traffic characteristics to identify significant causal factors have not
been discussed in detail.

In this thesis, four new methods--a modified Arnold and Antle procedure,
two new median estimators for a gamma distribution, a knowledge-based model,
and a hierarchical accident index method--were developed to identify significant
causal factors and assess traffic accident probability in the highway system. An
evaluation of these methods was performed on real data from over 300 sites in
Pennsylvania. A comparison of these methods and classical regression methods is
also presented.

Based on an absolute error loss function, it was concluded that the
modified empirical Bayes procedures, especially the two new median estimators,
are superior to the other methods in estimating accident risk when accident

statistics and measurement data are available. The knowledge-based model
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approach proved valuable for predicting accident risk for roadway sections as well
as identifying significant causal factors. The hierarchical accident index method,
using both accident records and subjective judgement, performs almost as well as
the modified empirical Bayes procedures in evaluating accident risk of wet

pavement accidents.
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Chapter 1
INTRODUCTION

1.1. Background

The identification and risk assessment for an event system has been a topic
of research for several decades. Interest in this problem originates from the
designing of large-scale engineering systems such as nuclear power plants,
chemical processing plants, traffic systems, and the like. The identification and risk
assessment technique is applied to analyze the causation or assess the risk of a
possible undesired event in the system. From a safety point of view, an undesired
event could be a leak of radiation, a water pump failure, a fire, a toxic gas leak, or
a traffic accident. In this thesis, the research was focused on the traffic event
system.

Traffic accidents are the most common and uncommon events in our daily
lives. According to the 1989 National Safety Council report, the number of motor
vehicle accident deaths represents 49% of all accidental deaths (see figure 1.1). If
one looks at the number of motor vehicle accident deaths and the death rates in
the consecutive years from 1983 to 1988, it is clear that there exists a serious issue
in the prevention of traffic accidents (see figures 1.2 and 1.3). Im striving to

improve the safety of the traffic event system, numerous methodologies have been
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Figure 1.1. Causes of accidental death as reported by the
National Safety Council.
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Figure 1.2. Accidental deaths associated with motor vehicle
accidents (1983-1988).
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Figure 1.3. Death rates in motor vehicle accidents (1983-1988).



developed. Most of them concentrate on identifying the problem (hazardous,
accident-prone, abnormal, etc.) locations. However, the effectiveness and
accuracy of these procedures are limited. Today, the identification of
accident-prone locations becomes more crucial due to the increasing demand for
system safety under severe resource and budget constraints. -

The traffic event system is generally recognized as a human-vehicle-
roadway system. The causation of a traffic accident is considered as an outcome
of interaction among the human, vehicle, roadway, and traffic factors. The
complexity and uncertainty in the system mandate the development of a workable

model and thus the identification and risk assessment problem remains a topic

worthy of study.
1.2. Review of Literature

Studies of the traffic event system identification can be traced back to the
1950s. Most of the work relied principally on the accident statistics in attempting
to identify the so-called problem locations without analyzing the causation of
traffic accidents. In highway agencies, the accident frequency method is. the most
commonly used method. It has the advantage of simplicity and is easy to
implement. Using this method, a location is identified as a hazardous location if
the accident frequency at the location in a specific time period is higher than a

critical value.



6

A second approach, the accident rate method, involves the concept of risk,
which is determined simply by dividing the number of accidents by the vehicle
exposure (usually in millions of vehicle miles, MVM, or millions of vehicles, MV)
at the location of interest. The assumptions behind the definition are that (1)
there exists a linear relationship between the accident frequency and the vehicle
exposure (a slope), and (2) the exposure is a value measured without an error.
However, a comparison of the accident risk between sites may draw an incorrect
conclusion because of neglect of the variation (random) effect of the exposure
either between locations or at the location.

A third technique, the quality-contro} method, was developed by Norden et
al. (1956). The method applies the statistical quality-control technique to calculate
a critical accident rate for the same "category" of road. The critical accident rate
serves as the upper and lower bounds of a control chart. Any road site is
identified as a problem location if its accident rate falls outside the control
interval. Basically this approach is promising if the sample size of the same
“"category” of road sites is large enough and the variation of individual vehicle
exposure is small. Nevertheless, the problem of neglect of the random effect of
exposure found in the accident rate method is also encountered here.

Another approach is called an accident severity method which identifies
and/or ranks locations based on the number of severe accidents at each location.
Accident severity is defined by the National Safety Council (1976) according to the

following categories: (1) Fatal accident, (2) A-type injury (incapacitating)



accident, (3) B-type injury (nonincapacitating) accident, (4) C-type injury
(probable injury) accident, and (5) PDO (property damage only) accident.
Weighting factors are assigqed to different categories to obtain an index for
identifying or ranking. This method requires a detailed description for each
accident at each location. Additionally, it involves subjective assignment of
weighting factors.

Other developed methods that concentrate on analy-zing the accident
causation can be grouped into two categories focusing on the aspects of the
roadway and the drivers, respectively (Laughland et al. 1975). Methods in the
roadway category include:

1. Skid testing

2. Hazardous indicator reporting

3. Correlation of geometrics with accidents

4. Accident risk factor

5. Formula methods

6. Field observation
For the second category, the methods include:

1. Conflict analysis

2. Speed distortion skew

3. Correlation of speed changes with accident rates

4. Accident rate versus minimum safe headway

5. Physiological response testing



The skid testing method assumes that the friction, as measured by skid
resistance, is an index of potential risk of skidding accidents for a given location,
A critical value of skid resistance is usnally assumed to represent the minimum
skid resistance that is considered necessary to provide sufficient traction for
vehicles traveling on a particular roadway section. A location is identified to be
slippery if its skid resistance is lower than the critical value. Determination of the
critical skid resistance for the population of road sites, however, is clouded by the
site- and time-specific characteristics of skid resistance (Giles and Sabey 1959,
Rice 1977). Thus, the effectiveness of using skid resistance alone to assess
accident potential may not be adequate. A remedy procedure that adjusts the
measured skid resistance with respect to standard conditions was developed by the
Pennsylvania Transportation Instituie (Wambold et al. 1988). It is designed to
take care of the random effects caused by environmental conditions. An
application of this procedure is described in chapter 6.

The hazard indicator reporting method is designed to identify locations or
conditions that help to cause or increase the severity of highway accidents. The
accuracy of the hazard indicator reporting depends on the knowledge and
judgement of highway personnel.

The method of correlating road geometrics to accidents has been used
increasingly through a statistical technique known as regression analysis. This
analysis method basically assumes that between the accident and highway

geometrics exists a cause-and-effect relationship and that a location can be



identified to be hazardous through the constructed relationship. The difficulty
involved with this method is that various interactions between the components of
geometrics need to be taken into account.

Fine (1971) proposed the approach of accident risk factor for identifying
hazardous locations. Essentially, the method uses a scheme of rating assignments
to deal with vague information in the traffic system and classify them into different
levels. The assignment of the ratings is crucial to the identification procedure.
Different ratings might result in different lists of hazardous locations.

The formula method is a deterministic approach to the modeling of the
traffic accident system. It attempts to relate the suspected casual factors to the
accidents. The assumption behind this method is that hazardousness can be
computed by using measurable “independent” variables. Unfortunately, the
identification of the independent variables is difficult and an improved scheme
might be needed.

The field oﬁsewation approach can give valuable suggestions if the
observers are well trained to understand the causation of traffic accidents.
Hazards are identified through the observer’s judgement during a routine field trip
or a specific trip to a location having high accident frequency. It should be noted
that the location with identified hazards may not always have high accident
frequency since drivers may also perceive the hazards and drive more cautiously.

Perkins and Harris (1968) developed the traffic conflict analysis technique

to analyze the accident potential at intersections. An evaluation of this method
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was then done by Baker (1972). Using this approach, a location is identified as
hazardous if it has a high number of traffic conflicts. The most promising use for
this technique is to prescribe applicable improvements for the hazardous locations.

The speed distribution skew method was proposed by Caples and
Vanstrum (1969). It assumes that the increase of accident frequencies is
proportional to the increase of speed difference between vehicles. The existence
of a wide speed difference between vehicles, displaying a skewed speed
distribution, is identified as an accident potential.

A method that correlates speed changes with accident rates assumes that
the number of vehicle speed changes indicates. the accident potential of a highway
section. Researchers at the North Carolina State University found that an
absolute speed change of 4 mi/h per unit of time would be critical (Heimbach et
al. 1968).

Rockwell and Treiterer (1968) proposed the accident rate versus the
minimum safe headway method to identify the hazardous location. The basic
assumption of this method is that the accident potential increases when relative
velocity is high and headways are short. If most of the vehicles at a location
operate at less than a minimum safe headway, the accident potential of the
location will be high.

The physiological response testing method measures the driver’s response
at the driving task. Special equipment (which is usually not owned by the highway

agencies) and techniques are reqguired to perform this testing, and the operating
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cost is high. Hence, this approach may be more suitable for a research study than
for routine testing.

An extensive study of the wet weather accidents using analytical and
empirical techniques was conducted by Ivey and Griffin (1977) at the Texas
Transportation Institute (TTI). An analytical wet weather index and an empirical
wet weather index were formulated and used to identify hazardous locations and
predict wet weather accidents. The effectiveness of the analytical wet weather
index, as the authors claimed, may not be superior to the empirical wet weather
index.

The Bayesian estimation method is a different approach from those
methods described previously. It has been applied to a vast area of science and
engineering systems emphasizing the characteristic of uncertainty. In 1955,
Robbins developed the nonparametric (frequency ratio) empirical Bayes method
(EBM) to estimate the posterior mean of a Poisson distribution. The parametric
EBM’s were then developed by Maritz (1966, 1969, 1970), Rutherford and
Krutchkoff (1969), and Lemmon and Krutchkoff (1969). Essentially, the
parametric EBM follows the formalism of the Bayes theorem (1763) except that it
evaluates its prior information and hyperparameters empirically.

The EBM has been generalized or reformulated by many researchers to
deal with different problems such as survival time, risk and reliability estimation,
and so on. The estimation of the number of accidents and/or the accident risk is

one of the possible applications. The application of the EBM to a traffic event
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system was realized by Arnold ar.d Antle (1978), who formulated a parametric
EBM to estimate the risk of traffic citations for drivers. Abbess et al. (1981) also
employed an empirical Bayes procedure to evaluate the effectiveness of the
remedial treatment of road surfaces based on the expected number of accidents.
Hauer and Persaud (1984) estimated the probabilities of accidents to determine
the hazardousness of various locations. A variant EBM was developed by Briide
and Larsson (1988) to deal with problems that arise when lllSil‘lg conventional
EBM for a small sample size. For evaluating accident risk, Higle and Witkowski
(1988) formulated a two-step EBM to identify hazardous locations, using biased
estimators of the sample mean and variance. A study of wet pavement accidents
using Arnocld and Antle’s procedure with grouping strategies was conducted by
Kulakowski et al. (1990b). Because of the relatively small size in each group, the
effect of grouping is not distinct. An extensive study of this wet pavement
accident problem, using newly developed methods, was performed in this thesis.
In a recent report, Morris et al. (1991) presented a hierarchical empirical Bayes
procedure to rank highway sections based on expected accident rate and to
evaluate the effectiveness of remedial measures. A reference data set with a large
number of road sites is necessary for the method to evaluate its model
parameters.

When the objective information (parameter measurements or collected
data) is not available and human factors play an important role in the system, a

subjective type of approach would be an alternative way to model the system.
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The application of Shafer’s belief function theory (1976) to the risk assessment
problem in traffic event systems would be a new application in this research. A
brief introduction to the Bayesian methods and the belief function theory is given

in chapter 2.
1.3. Statement of the Problem

Generally speaking, accident reduction problems in the traffic event system
can be viewed as a control problem. Two schemes are often applied. One is a
direct approach and the other is an indirect approach. The direct approach
methods include accident frequency method, accident rate method, severity rate
method, EBM, and so on; these methods rely solely on the accident histories to
assess the accident proneness for the location of interest without making any effort
to identify the system. Conversely, the indirect approach methods--which include
the correlation of geometrics method, accident risk factor method, formula
method, wet weather index, and so on--attempt to identify the system first using
the measurements of suspected attributing factors only or the measurements and
the accident histories simultaneously. Appropriate countermeasures are
prescribed based on the identified model. Figures 1.4 and 1.5 illustrate the
structures of the two approaches.

The common problem to the direct approach methods is that the accident

histories suffer from the deficiencies of time delay and insufficient degree of
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Ya (Acceptable Number of Accidents)

Methaodologies

Accident Risk

Accident Countermeasures

|Traffic Event System I
* Y1 {Observed Number of Accidents)

Figure 1.4. The structure of the direct approach.
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Figure 1.5. The structure of the indirect approach.
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accuracy when reporting. Moreover, a bias introduced by the regression-to-mean
effect for the road site of interest cannot be neglected. A regression-to-mean
effect is described as 2 phenromenon that a location with a large (small) number of
accidents during a "before" period tends to decrease (increase) to a small (large)
number of accidents in a similar "after" period without having implemented any
improvement measures.

The difficulty with the indirect approach methods is that the accuracy of
the identified model may be limited. This may be due to the selection of model
structure or the system not being identifiable based on available data. In general,
a deterministic model is favorable because of its simplicity; however, for the traffic
event system, the deterministic model may not be suitable due to the fact that the
system is stochastic in nature.

In response to the problems of regression-to-mean effect and the inherent
randomness of the system, the EBM has been shown advantageous (Arnold and
Antle 1978; Abbess et al. 1981; Hauer and Persaud 1984). However, the following
shortcomings still remain:

e The adequacy of sample size for estimating the model parameters has

not been determined.

e The random effect of vehicle exposure in the population of road sites

has not been taken into account.
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e No effort has been made to utilize both the accident histories and the
measurements of roadway and traffic characteristics to identify

significant causal factors for a traffic accident.
1.4, Research Objective

The objective of the proposed study is to develop a ﬁodeling technique,
based on the probabilistic-type approaches, for traffic event system identification
and prediction. Specifically, the problems of determining the adequate sample
size for estimating model parameters, the random effect of vehicle exposure, and

the utilization of both accident histories and measurement data will be addressed.
1.5. Thesis Overview

The methodologies presented in this thesis attempt to address the task of
traffic event system identification and risk assessment. The work begins with a
review of literature, problem statement, and description of research objective in
chapter 1. An introduction to the Bayesian methods and belief function theory is
presented in chapter 2 to provide a theoretical foundation for the later
development work. The development work is divided into two parts--one which is
considered as an objective type of approach, based on the Bayesian methods, and

the other based on the belief function theory, a subjective type of approach. For
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the objective approach, a modification (Lin et al. 1991) was recommended in
chapter 3 to improve the empirical Bayes procedure developed by Arnold and
Antle in 1978, An evaluation of the empirical Bayes, maximum likelihood, and
Bayes estimators using the Monte Carlo simulation technique was also performed
and is presented in chapter 3. Two new median estimators were developed and
are evaluated (Lin et al. 1991) in chapter 4, where an absolute error loss function
is considered. In considering the subjective type of approach, a knowledge-based
model was developed and presented in chapter 5. After the development work,
validation was performed on a real data set provided by the Pennsyivania
Department of Transportation using the developed methodologies; the validation
is shown in chapter 6. A comparison of these methodologies based on their
estimation accuracy was then made to determine the best method or methods to
address the problem of risk assessment and identification. Conclusions and

recommendations are then described in chapter 7.
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Chapter 2

INTRODUCTION TO BAYESIAN METHODS AND
BELIEF FUNCTION THEORY

2.1. Bayesian Methods

Consider an estimation problem in which observation y of a discrete
random variable Y is available. The probability function is f(y| M), and the
parameter % is estimated in a minimum square error sense. Classically, the
f(y| n) is interpreted as a sampling distribution. The consideration of f(y| N ) as a
function of y, with M fixed is called the sampling distribution of Y, given n. If

results from a random sample, say y,, ¥» ¥s» - ¥n are available, then a likelihood

function is defined as:

i=n
117 Gilm (2.1)

{=1

It is a function of the parameter . The utilization of the likelihood function to
represent the sample information is based on the likelihood principle, which states
that the likelihood function contains all the information from the sample that is

relevant for inference making. Following this principle, two parameter estimation

schemes, the maximum likelihcod estimator (MLE) and the Bayesian estimator

are often used. The MLE is designed to find the value of parameter N that
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maximizes the likelihood function. It can be interpreted as the value of M that
makes the observed sample results appear most likely (Winkler 1972).

Frequently, it requires a complex iterative procedure to obtain a desired maximum
value.

The well known Bayes theorem (1763) provides a simple and useful
formalism to incorporate subjective prior knowledge into the analysis of an
experiment. It is derived from manipulating the joint, conditio-na], and marginal
probabilities. If A and B are considered to be two events, a mathematical

expression of the Bayes theorem will be
P(A,B) =P(A|B)P(B) = P(BIA)P(A) (2.2)
To the estimation problem, a probability density function for the parameter 9,

referred to as prior distribution, is required in the Bayesian approach. Bayes

theorem gives the posterior density of the parameter M as:

Flnly) = fCymY(n) 23)
JF(yIn ¥ (n yan

Bayes’ estimators will be the optimal estimators when the prior distribution is
precisely known. In practice, this is rarely the case; therefore, an estimation

procedure for the prior distribution must be developed. Before introducing the
estimation procedure for the parameter M in the traffic event system, some

fundamental assumptions were made and described in the next subsection. These
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assumptions are considered to be essential to the praobabilistic-type models

discussed in later chapters.
2.1.1. Fundamental Assumptions and Notations in Estimating Accident Rates

The occurrence of traffic accidents on a road site is generally assumed as a
Poisson random process. This originates from the theory of queues and can be
interpreted as below:

If a random variable t, is considered as the arrival time of the i® customer

(traffic accident) requiring service in a service system (at a road site) and

the interarrival sequence associated to t, (i = 0) is represented by T;,, with

Tir = b - & (iz0)

then, the sequence T,, Tz,‘ T, ...y Ty, is called a point process over the

positive real axis R*. The point process is called a homogeneous Poisson

random process with aﬁ intensity H if and only if its associated counting

process of the number of customers (the number of traffic accidents) N(t)

satisfies that

1. For every pair of {r,s} and s > r; {N(s)-N(r)} is a Poisson random
variable with mean (s-r)H.

2. N(1), t > 0 has independent increments. That is, {N(t,)-N(t,}},
{N(t,)-N(t,)}, {N(t)}-N(t))}, .ccecn. s {N(1,)-N(t,,)} are independent for

every0st, <, €ty € s S 1,
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The assumption of a Poisson process implies that for a road site, the
probability of y accidents occurring in time interval t given a constant average rate

h can be represented by a Poisson distribution with the expression:

-(h)
P(Y=y|t, H=h ) = (_"l).-’-‘;-— . withy = 0,12,3,- (2.4)
y

where Y and H are two random variables and ht (= 1) represents the average
{expected) number of accidents in the time interval t. It shlould be noted that the
average number of accidents A, which is assumed to be the true number of
accidents for any specific road site, can never be known and may vary from site to
site. Estimating the average accident rate h and/or the expected number of
accidents A will be the main task of parameter estimation in the empirical Bayes
procedures. In this research it is assumed that for the i® highway section of
interest, the number (y,) of traffic accidents for a time period of interest will be a

Poisson random variable with parameter A, given by:

A, =Mp, (2:5)

where M, is the traveled vehicle miles for the i® section, calculated as:

M, = SL+ADT»DAYS, (2.6)

where
SL = section length
ADT average daily traffic
DAYS = time duration
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The h, in equation 2.5 is the accident rate for the i® site. M, will usually be given
in millions of vehicle miles. M, will be called the exposure and h, the risk for the
i® site.

The empirical Bayes procedure developed by Arnold and Antle in 1978
realizes the application of the Bayesian estimation technique to a traffic event

system. An introduction to the procedure is given in the next subsection.
2.1.2. Arnold and Antle Procedure

It is commonly assumed for a collection of different road sites that the
expected accident rates h, i=1,2,3,... are independent and identically distributed
as gamma random variables with a density f(h|a,8) (Arnold and Antle 1978).
The parameters a and B are called the shape parameter and the scale parameter,
respectively, of the gamma distribution. The prior probability density for the

accident rate at the i® road site, h, can then be expressed as:

b

hf 'lexp-i ) (2.7)
fh|e,B) = ———2 | with h, >0, a >0, p >0
I(a)p®
where
I'(x) = j; “%lexpdt, «>0 (2.8)

here t is a real variable.
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Since the parameters in the prior distribution for the h; are not usually
known, a procedure for estimating them from a given set of observations on
highway sections similar to the i® highway section must be developed. Following
the approach given by Arnold and Antle (1978) (hereafter referred to as the AA
procedure), it is assumed that for each of N similar highway sections, the exposure
(M)) and the number of accidents (y,) for the time period of interest are known. If
SY and SSY are the sums of y;, and y;, respectively, and likewise if SM and SSM
are the sums of M, and M}, respectively, it can be shown that when using the
method of moments, estimates for « and 8 are given by:

B = (SSYYSM) _ SM _ SY (2.9)
(SY) SSM) SSM SM

and

§=—SY (2.10)
B(SM)

The expected value of the accident rate h, given the observation y, can be

expressed as:

KeALRLE (2.11)

’;; = E( h[lyj) = =
1.0+B( M,)

In this case, the maximum likelihood estimate for h; is given by y; / M.
In the following chapters, the AA procedure was considered for the

problem of risk assessment and identification in a traffic event system. A
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modification of this procedure was recommended for those problems in which the
estimates of the parameters obtained in the prior distribution become
unreasonable. Two new approximate median estimators based on an absolute

error loss function are also presented.
2.2. Belief Function Theory

The belief function theory (Dempster 1967; Shafer 1976) is intended to
provide a mathematical foundation and systematic procedure for combining bodies
of evidence of a proposition. It originates frm-'n the formalism of Bayesian
inference. However, it assigns lower probabilities (Shafer’s degree of belief) to
propositions rather than simple additive probabilities as the Bayesian does. The
theory uses a number between 0 and 1 to indicate the degree of belief (support)
for a body of evidence to a proposition. Its combination scheme for the degrees
of support to a proposition is called Dempster’s rule of combination. An
application of this theory to the problem of identification and risk assessment in
traffic event systems to construct a knowledge-based model is presented in chapter
5. A brief introduction to this theory is presented in the following subsections to
give a general picture. The notations, definitions, and theorems are followed by

Shafer’s mathematical theory of evidence (1976).
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2.2.1. Basic Definitions and Theorems

Consider a parameter e and the finite set of its possible values @; the

proposition of interest would be "the true value of e is A". Here A is a subset of
6. The set of all subsets of @ is denoted by 28. As an illustration, if:

e =, B -

then  2° = ({o}, {4}, (B}, {4, B}
This implies that, by properly choosing the © and @, the 29 can be the set that

contains all propositions of interest. If we let the @ be the set of all the different
possibilities under consideration, then it is called the frame of discernment that

discerns a proposition corresponds to a subset of @ (Shafer 1976).

DEFINITION 2.1. If @ is a frame of discernment and A is one of its subsets,

then a function m: 28 - [0,1] is called a basic probability

assignment (bpa) whenever

m(e) =0 and Y m(4) = 1.
=

The quantity m(A) is called A’s basic probability number. It is the measure
of the belief that is committed exactly to A, but not the total belief committed to
A. The m(A) cannot be further subdivided and does not include portions of belief

committed to subsets of A. To measure the total belief committed to A, a belief
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function is defined. The class of belief function based on the bpa m is defined as:

DEFINITION 2.2. A function Bel: 22 - [0,1] is called a belief function over g if

for some basic probability assignment m: 29 - [0,]]

Bel(4) = Y m(B)

BcA

It should be noted that the bpa m produces a given belief function that is unique

and can be recovered from the belief function by the following theorem:

THEOREM 2.1. Suppose Bel: 2° . [0,1] is the belief function given by the basic

probability assignment m: 29 .. [0,1], then
md) =Y (-)“*? Bel(B); VAc®© (2.12)
BcA

where |4-B| is the number of elements in the set of (4 - B}.

In addition to the above definition of the belief function, another

characterization of the belief function is shown in the following theorem:
THEOREM 2.2. If @ is a frame of discernment, then a function Bel: 22 - o,1]
is a belief function if and only if it satisfies
(1). Bel(g) = 0.
(2). Bel(@) = 1.

(3). For every positive integer n and every collection
A, A,y A, Of subsets of @,
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BeldU--U4)y = ¥ (-DVI*! Bel(N4)
iel

I=[1, - )

Irs

2.2.2. Belief Interval

The belief function Bel(A), however, does not completely describe one’s
belief about proposition A. Since Bel(A) does not reveal to what extent one

believes its negation A, a definition of degree of doubt is necessary. The degree

of doubt Doubyd) is defined as:

Doub(A) = Bel(A)

If one lets

P*(A) = 1-Dou(A)
then the quantity p+(4) is called the upper probability of A, or the plausibility of A.

It can be expressed in terms of the basic probability assignment m:

P*(4) = 1-Bel(d) = Y mB) - Y, m(B) = ¥ m(B). (2.13)
BeA

BcB [T
Comparing equation 2.13 with the expression in definition 2.2, one can conclude

that

Bel(4) < P*(4) (2.14)



29

This inequality 2.14 characterizes a belief interval for the proposition A if the
Bel(A) is called a lower probability function and the p*(4) an upper probability

function to A, respectively. The interval is then denoted by [Bel(A), 1-Bel(A)].

2.2.3. Combination Scheme

After defining the belief function and belief interval in the previous
subsections, the combination scheme for pooling evidence can be introduced.
Dempster’s rule of combination (1967) provides a simple and effective way to
compute an orthogonal sum of distinct bodies of evidence and produces a new
belief function based on the combined evidence. A weight of conflict was also

introduced to deal with the problem of conflicting bodies of evidence.

Suppose m, is the bpa over a frame of discernment @ for a belief function
Bel, and has the elements 4 , 4,,.., A,; the probability masses of m, can be

depicted as segments of a line of length 1, as shown in figure 2.1. Similarly, for

another bpa m, over the @ of a belief function Bel, with elements B ,B,, .- B, ,

the probability masses of m, are depicted in figure 2.1. The combination of Bel,
and Bel, was performed by calculating the total intersection areas shown in figure
2.2. These areas represent a joint effect of Bel, and Bel,. This implies that the

total probability mass exactly committed to A can be represented by:



mi(AlL) ml(A3)
mi(A2) o ml1(An)
0 1 ml
m2(B1) m2(B3)
m2(B2) 0 0 m2(Bm)
0 1 m2

Figure 2.1. Probability mass segments of m, and m,.

30
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m2 Probability Mass of m1(AD)m2(Bj)

, - /
m2(Bm) /
: i
m2(8}) 130
m2(B2)
m2(B1) 1
0 m
mi(A1) m1(A2) .. mil(Al) .. .. . ml(An) 1

Figure 2.2. Graphical representation of Dempster’s rule of combination.
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Y. m(d)my(B) (2.15)

i J
A‘nlj A

There exists a problem in calculating the orthogonal sum of m, and m, denoted by

m, &b m,: some of the intersection areas may commit to the empty set (p}; that

is, AlnB; = g. lo eliminate this problem, Dempster (1967) discarded those areas

committed to the empty set and introduced a weight of conflict--a normalization
factor K. The factor K measures the extent of conflict between evidences and is

represented by:

1-c 1- 3 mAa)myB) (2.16)
A'n"lf--

If ¢ < 1, then the function m: 28 - [0,1] is a basic probability assignment and is

characterized by:

by m (A)m,(B)
L]
m(e) =0 and m(A) = —=00 2 (2.17)
1- 3 mA)myB)

LJ
ANE=o

Dempster’s rule of combination can be justified by using simple support

functions. The simple support functions (Shafer 1976, pp.74-75) are belief

functions based on evidence points precisely to a single non-empty subset A of g.

If S is a simple support function focused on A, then m(A) = S(A), m(g) = 1 -
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S(A), and m(B) = O for all other B c @. The quantity m(@) is a measure of that
portion of the total belief that remains unassigned after commitment of belief to
various proper subsets of @. Suppose S,(A) = s, and 5,(B) = s, are two simple
support functions focused on A and B, respectively. If 4 M B # &, then both

support functions are heterogeneous and the combined effect of the bodies of
evidence can be shown by table 2.1. If A B = 2, then the two bodies of

evidence are conflicting. The weight of conflict K can now be applied to

normalize the basic probability numbers m. Table 2.2 shows the combined results.

2.2.4. An Example

Suppose that one wants to diagnose the cause of a bad roadway section
and three basic propositions have been proposed--bad pavement condition (PC),

bad geometric condition (GC), and bad traffic condition (T'C). The frame of

discernment @ can then be represented by a set of {PC, GC, TC}, and its subsets

are depicted in figure 2.3 except the empty set {p}.-

Suppose that a body of evidence confirms the diagnosis of bad pavement

condition or bad traffic condition to the degree of 0.6. Then m{{PC, TC}) = 0.6,
m(@) = 0.4, and the value of m for every other subset of @ is 0. The total belief

committed to the subset of {PC, TC} is expressed as:



Table 2.1. Orthogonal sum of heterogeneous evidence
for propositions A and B.

Committed to A

m(d) = sl - 5,)

Uncommitted

m®) = (1-s,}(1-5,)

Committed to AN B
m(A N B) =55,

Committed to B

m(B) = s,(1 - 5)

Table 2.2. Orthogonal sum of conflicting evidence
for propositions A and B.

Comumitted to A

51 -5)

m(d) =
1 -s5,

Uncommitted

(1-s)(1-s))

m(8) =
1-35s,

Committed to 2;

515y

Committed to B

34
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Roadway Section

{ PC, GC, TC }
{ PC, GC } { GC, TC } { PC, TC }
{PC} {GC} {TC}

Figure 2.3. The subsets of the set of the roadway section.
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Bel({PC, IC}) = m({PC, TC}H) + m({PC}) + m({IC})

Which is different from the amount of belief that committed precisely to A, the
m({PC, TC}).

If there are two bodies of evidence, one confirming the proposition to the
degree of 0.5 with basic probability assignment m, and the other disconfirming the
proposition to the degree of 0.3 through the basic probability assignment m,, then
the combined effect on belief is given by m L D m,,an orthogonal sum. Following
the formulation given in table 2.2, one can obtain the value of normalization

factor K = 1/ (1 - 0.15) = 1.176. The combined basic probability numbers are

m, ® m{PC, TC}) = 0.35+1.176 = 0.4117

m, ® m,({PC, TC}) = 0.15+1.176 = 0.1764
m, ® my(8) = 0.35%1.176 = 0.4117

Where ({pPC, TC) represents the complement subsets of {PC, TC} over the frame

of discernment @ = {PC, TC, GC}. It should be noted that the belief interval of
{PC, TC} has been changed from the original interval of [0.5, 0.7] to a new
interval of [0.4117, (.8236] after the combination process. This is intuitively
correct since the disconfirmation evidence mildly eroded the degree of support to

the proposition of {PC, TC}.
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2.3. Summary

In this chapter, the Bayesian methods and belief function theory were
introduced. Specifically, the AA procedure was discussed. The procedure will be
considered in the following chapters for the problem of accident rate estimation.
The brief introduction to the belief function theory provides a foundation for

constructing a subjective-type model, which will be discussed in chapter 5.
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Chapter 3

A MODIFIED EMPIRICAL BAYES PROCEDURE

While it is a viable method with important strengths, limitations also exist
in the AA procedure. First, it cannot secure the requirement of positive
parameters for the assumption of a gamma random variable for the accident rate.
Second, the sample size problem of the collected data needs to be addressed since
it conceivably affects the quality of parameter estimation. Third, the assumption
of constant exposure in evaluating the estimation procedure is insufficient since
the exposure in a traffic event system is likely to be randomly distributed. A
maodified rule is proposed in the folloﬁng sections to improve Arnold and Antle’s

empirical Bayes procedure.
3.1. A Modified Rule

The phenomenon of nonpositive parameters is often encountered when the
sample variance is less than the sample mean for the collected data. These are
not allowable in the gamma distribution and must be replaced by some other
values. A general remedy measure is to assign a large value for the parameter a
(Maritz 1969). This may not be appropriate for the real data because of the large

dispersion of the real data. It was observed from several exploratory analyses of
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simulated data that for the traffic accident problem, the values of « are often
between 1 and 6. This provides the basis for considering a large value of shape
parameter « (e.g. 10) as unwanted.

To account for the undesired conditions of nonpositive and large values of
parameter «, a modified rule for the AA procedure is necessary. Four different
rules were examined to determine the best one using the Monte Carlo simulation
technique. In essence, they are fixed parameter type and MLE-type rules. The
values of 1.5 and 10 were chosen based on several exploratory simulations. Table

3.1 summarizes these rules,

Table 3.1. Remedy rules.

Remedy Rules “

Rute 1 Rule 2 Rule3 Rule 4 |

Condition

Ife <0 Seta =15 Setax = 1.5 Use MLE Use MLE

Ifa > 10 Use MLE Seta =10 Use MLE

The simulation was made to simulate the Poisson process for traffic

accidents. Accident rates h were generated by a gamma distribution with different
parameter values. Three sets of parameters, (a = 1.2, 8 = 2.5), (a = 3.0, 8 =
2.5), and (a = 6.0, B = 2.5), were selected. For the vehicle exposure, based on

the observation of a real data set provided by the Pennsylvania Department of



40

Transportation, its random nature can be represented by a Weibull random
variable with a corresponding high or low exposure. The high exposure Weibull
had parameters of a = 0.15, b = 0.25, and ¢ = 2.0, while the low exposure
Weibull had parameters of a = 0.01, b = 0.1, and ¢ = 2.0. The parameters a, b,
and c represent the location parameter, scale parameter, and shape parameter,
respectively. Combining the accident rate h and the vehicle exposure, accidents
were generated through a Poisson generator for different sample sizes of road
sites. All of the generating processes used the TULSIM (Boswell 1987) software.
The sample size of generated road sites varies from 15 to 260. The
criterion for selecting a good rule is based on fhc mean absolute errors between
the actual and the estimated accident rate h for a given sample. An amount of
10% ecrror was arbitrarily chosen. Table 3.2 presents the results of simulation.
From the results in table 3.2, the first rule with a = 1.5 for « € 0 and @ = 10 for

« > 10 was chosen.

3.2. A Comparison of the Empirical Bayes, Maximum Likelihood, and Bayes
Estimators Using Simulated Data

In general, the Bayes procedure and the MLE method will produce error
rates that do not depend on the number (N) of highway sections in the group, but
the performance of the empirical Bayes procedure will depend upon N. To
illustrate the effects of exposure level (high and low) and number of highway

sections, several computer simulations were carried out, the results of which are



Table 3.2. Summarized results of Monte Carlo simulation.
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Notes: MAE = mean absolute error.
weib = Weibull distribution.
N = sample size from 15 to 260.

|| Parameter a=12 pf=25|a=30 =25 |a=60 p=235
weib (2.0, weib (2.0, |weib (2.0,] weib (2.0, |weib (2.0,| weib(2.0,
Vehicle Exposure 0.1,0.01) |0.25, 0.15)| 0.1, 0.01}]0.25, 0.15) | 0.1, 0.01) 0.25.0.15)|
Seta=15ifa <0 | MAE [ MAE T MAE | MAE [ MAE |MAE<I0|
Set o = 1['] if @ > 10 <10% for| < 10% fori<10% forj <10% for |<10% fori % for
N 235 | every N | N 245 N 235 N 2100 | every N
Seta = 15ifa <0 MAE MAE MAE MAE MAE [(MAE>10
Use NFLE ifa> 10 <10% for|<10% for|>10% for| <10% for {>10% for] % for
Remedy N 245 N 245 | every N| N 2120 | every N | every N
Rules . MAE | MAE | MAE MAE MAE |MAE<10
Use MLEifa <0 |_ 60 7 0% for|< 10% for| <10% & 0% f for N
Setea = 10if ¢ > 10, < 7 for| <109 for|<10% for| < e for |<10% for] % for
N 2140 | N 2100 | N=180 N 260 N 220 260
. MAE MAE MAE MAE MAE |MAE>10
I‘f: ;‘fgl‘ff: N [1’0 <10% for| <10% for|>10% for| <10% for |>10% for] % for
N 21601 N260 |every N| N 2120 | every N | every N |
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given in figures 3.1 through 3.12, It can be seen from figures 3.1 through 3.6 that
under these simulated conditions the modified AA procedure is almost as good as
the ideal Bayes procedure whenever there are at least 60 highway sections in the
group of interest. It is also clear that the greater the exposure the less the benefit
of the Bayes procedure. This is to be expected, since there will be a great deal of
information for each site when the exposure at the site is large, and thus less need
for using information from other similar sites. For estimatirllg the parameters o
and B, the EBM is observed to have a good performance from figure 3.7 to figure
3.12 when sample size is greater than or equal to 100. Hence, a recommended

sample size for parameter estimation is 100.
3.3. Summary

A modified rule, @ = 1.5 for @ < 0 and « = 10 for @ > 10, was proposed in
this chapter to deal with the problems of nonpositive and large values of
parameter a. A comparison of the modified AA procedure, maximum likelihood,
and Bayes estimators was carried out using computer simulation. The simulation
results indicate that the modified procedure performs almost as well as any

possible rule could perform.
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Figure 3.1. Mean absolute errors in estimating the accident risk for a

low-risk and low-exposure class of roads.
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Figure 3.2. Mean absolute errors in estimating the accident risk for a

low-risk and high-exposure class of roads.
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Figure 3.3. Mean absolute errors in estimating the accident risk for a

medium-risk and low-exposure class of roads.
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Figure 3.4. Mean absolute errors in estimating the accident risk for a

medium-risk and high-exposure class of roads.
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Figure 3.5. Mean absolute errors in estimating the accident risk for a

high-risk and low-exposure class of roads.
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Figure 3.6. Mean absolute errors in estimating the accident risk for a
high-risk and high-exposure class of roads.
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Figure 3.7. Parameter estimates in estimating the accident risk for a
' low-risk and low-exposure class of roads.
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Figure 3.8. Parameter estimates in estimating the accident risk for a
low-risk and high-exposure class of roads.
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Figure 3.9. Parameter estimates in estimating the accident risk for a
medium-risk and low-exposure class of roads.
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Figure 3.10. Parameter estimates in estimating the accident risk for a
medijum-risk and high-exposure class of roads.
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Figure 3.11. Parameter estimates in estimating the accident risk for a
high-risk and low-exposure class of roads.
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Figure 3.12. Parameter estimates in estimating the accident risk for a

high-risk and high-exposure class of roads.
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Chapter 4

DEVELOPMENT OF TWO NEW MEDIAN ESTIMATORS

4.1. Two New Median Estimators for a Gamma Distribution -

For a traffic event system, it is usually more useful to calculate the absolute
errors between the estimated number and the actual number of accidents than to
calculate the squared errors between the actual and estimated number of
accidents. Alsog, it is well known that with an absolute error loss function, the
Bayes estimator will be the median of the quantity of interest. Thus, a median
estimator for the accident rate based on an absolute error loss function should be
considered.

Without loss of generality, the median, med, of a gamma distribution with

the scale parameter 8 = 1, can be obtained from the following expression:

l - xw-lexp-xdx _ f’"“’ xa-lexp-xdx (4.1)
240 T(a) o ()

Solving equation 4.1 numerically for several values of parameter «a results in the
estimated median values shown in table 4.1. When the data in table 4.1 are
plotted in figure 4.1, it is clear that a straight line provides a very good fit. Two

simple regression models, one without a constant and one with a constant, were



Table 4.1. Median estimates obtained
using equation 4.1.

med I’ a

a med

0.5 0.225 " 35 3.17

1 0.695 " 6 5.668

1.5 1.183 ” 6.5 6.1698

2 1.678 " 7 6.671

2.5 2.175 7.5 7.182

|| 3 2.674 8 7.67
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Figure 4.1. The median values versus parameter alpha piot.
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developed. The results in equations 4.2 and 4.3 provide two approximations for

the relationship between the median values and the shape parameter a.
med = 0.9967¢ - 03074, with R*:1.0; (4.2)

med = 0.952a, with R220.99 (4.3)

These results provide the basis for considering two new estimators for the accident

rate. These estimators are defined by the following equations:
h=B,(a,-k) (4.4)

= kb, (4.5)

where
B, = posterior scale parameter [§ /(1.0 + (M, )]

%p = posterior shape parameter (y,sg)

The k. and k, are two constants used for defining the two new estimators.
The values selected for k, and k, were based on a computer simulation. A sample
size of 100 and varying vehicle exposures represented by Weibull distributions
were used in the evaluation of possible values for these constants. Summarized
results are shown in tables 4.2 and 4.3. The optimal values of k. and k, represent
the k values at a minimum sum of absclute error or sum of square error between

the estimated accident rate and the actual accident rate, respectively.
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Table 4.2. The optimal values of k. and k, for sample size = 100
and high vehicle exposure level.

k. Values k, Values ,

EBM,,, | EBM,, | Bayes,, | Bayes,. | EBM,,, | EBM,,. | Bayes,,, | Bayes,,

o l
£
2
3

0.29 0.04 0.35 0.02 0.87 0.96 0.88 0.99

nu

0.28 0.0 0.30 0.0 0.95 0.59 0.95 1.0

0.34 0.0 0.34 0.0 0.97 1.0 0.97 1.0

0.23 0.04 0.30 0.0 0.94 0.97 0.95 1.0

0.18 0.0 0.32 0.0 0.97 1.0 0.97 1.0

o
= R e BN R N Y

021 0.08 0.32 0.01 0.96 0.98 0.98 1.0

‘Im“ oriver|rljlor|onr
TR

Notes: Param. Parameter,

EBM,,, The condition of using the empirical Bayes procedure to calculate the sum
of absolute error.

EBM,, = The condition of using the empirical Bayes procedure to calculate the sum
of square error.

Bayes,,, = The condition of using the ideal Bayes procedure to calculate the sum of

absolute error.
Bayes,, = The condition of using the ideal Bayes procedure to calculate the sum of
square €rror.
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Table 4.3. The optimal values of k, and k, for sample size =100
and low vehicle exposure level.

—
k. Values k, Values
Param. EBM,,, | EBM,, | Bayes,, | Bayes,.| EBM,, | EBM,,. { Bayes,,, | Bayes,,
5z : 018 | oo6 | 030 | oor | 081 | 0% | 08 | 099
nos 030 | 003 [ 034 | 002 | 088 | oss | oss | 09
ﬁ“f 1% 0.34 006 | 033 | 004 | 092 0.99 0.92 1.0
g = f 0.10 004 | 032 | 00 0.93 0.93 0.94 1.0
E : -11 0.07 0.05 0.29 0.0 0.92 0.93 0.97 1.0
a = 10 .
B=1 0.02 0.03 0.30 0.0 0.94 0.94 0.97 1.0
— ]
Notes: Param. = Parameter.
EBM,, = The condition of using the empirical Bayes procedure 10 calculate the sum
of absolute error.
EBM,. = The condition of using the empirical Bayes procedure to calcuiate the sum
of square error.
Bayes,, = The condition of using the ideal Bayes procedure to calculate the sum of

absolute error.
Bayes,., = The condition of using the ideal Bayes procedure to calculate the sum of
square error.
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It is expected that the k. value will be 0.0 and k, value will be 1.0 for
square error loss function. This can be verified easily from the columns of EBM,,
and Bayes,,, in tables 4.2 and 4.3. This implies that the simulation is on the right
track. With the absolute error loss function, it is noted that from equations 4.2
and 4.3 ideal values would be around 0.3 and 0.95 for k. and k,, respectively,
under the fixed B condition. As expected, the ideal Bayes procedure does possess
this feature as shown in the tables 4.2 and 4.3.

For the empirical Bayes procedure, the k, values decrease as parameter a
increases for the fixed B situation, whereas the k, values increase as parameter o
increases. This implies that the estimate of accident rate h using the square error
loss function or the absolute error loss function varies little when the parameter «
is large. Another observed phenomenon is that the k. value is sensitive to the
variation of vehicle exposure while the k, values are relatively insensitive. The
average values of k, and k, for the small and large vehicle exposures are shown in
table 4.4.

The small vehicle exposure level, M;~weib(2.0,0.1,0.01), which indicates
that less information is available for the accident rate estimation process, is
generally the most difficult situation for obtaining good estimates. Based on the
above simulation, the second median estimator, using the k, value, seems to be
more promising than the first median estimator using the k..

The final chosen values for k. and k, are 0.21 and 0.92, respectively.
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Table 4.4. Average values of k, and k..

. k. Values k, Values
Vehicle Exposure
EBM,,. Bayes,,, EBM,,, Bayes,,,

M, ~ weib(2.0,0.25,0.15) 0.26 0.32 0.94 0.95
M, ~ weib(2.0,0.1,0.01) 0.17 0.31 0.90 0.923

An evaluation of the two median estimators, performed on the same data set

reported by Morris et al. (1991), is given in the next section.

4.2. An Evaluation of the Two New Median Estimators

Based on the obtained values of k, and k,, an evaluation for the two new
estimators was conducted on the simulated data set reported by Morris et al.
(1991) and reproduced in table 4.5. This data set consists of simulated values of
events (z) and exposures (¢} for 35 sites. Four empirical Bayes procedures were
applied to the data set, and the results for these are also presented in table 4.5.
They are the Morris hierarchical Bayes (MH), the Arnocld and Antle empirical
Bayes, and the two new estimators defined by equations 4.4 and 4.5 (L1 and L2).
The simple MLE is also given in table 4.5. The results of these methods are
shown in figures 4.1 through 4 4 and summarized in table 4.6, where it is seen that
the two new estimators have, for this set of data, provided better estimates for the

accident risk than the other methods.



Table 4.5. The simulated data set given by Morris et al. (1991).

17 10 15.2 0.7185 | 0.75
18 15 159 | 09433 0.96 0.0503 | 0.9423 | 0.8743 | 0.65
9 21 17.7 1.1864 1.08 1.1029 | 1.0954 | 1.0147 | 0.99
20 13 18.4 0.7065 0.83 0.7984 | 0.7911 | 0.7345 | 0.73 |
21 25 19.3 1.2953 1.15 1.1781 | I.I7t1 | 1.0839 | L.15
22 21 196 1.0714 1.02 1.0331 | 1.0261 | 0.9504 | 0.81
[ 23 15[ 205 | 07317 | 083 | 08089 | 08021 | 0.7441 | LI
|24 41 23.7 1.73 1.42 1.4952 | 1.4891 | 1.3756 | 1.56
{25 16 24 0.6667 0.79 07556 | 0.7495 | 0.6952 | 1.0
26 27 24.5 1.102 1.05 1.0599 | 1.0539 | 0.9751 | 1.14
27 25 25.3 | 0.9881 0.98 09802 | 09743 | 0.9018 | 0.9
28 28 28.0 1.00 0.99 0.9894 | 09839 | 0.9102 | 0.94
29 24 204 0.8163 0.87 0.8541 | 0.8488 | 0.7858 | 0.72
30 28 30.3 0.9241 0.94 0.9335 | 0.9283 | 0.8588 | 0.92
31 37 32.7 1.1315 1.08 1.0903 | 1.0854 | 1.0031 | 1.14
32 49 32.9 1.4894 1.32 1.3623 | 1.3575 | 1.2533 | 1.26
33 25 | 338 | 073% | 081 | 0.7917 | 0.787 | 0.7284 | 0.72
N34 15 339 | 04325 0.61 05642 | 0.5595 | 05191 | 057
[ 3 28 36.1 0.7756 0.53 0.8171 | 0.8125 | 0.7517 | 0.59
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Accident Rate Estimation
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Bource: Morris ot al. (1991).

Figure 4.2. Accident rate estimation using the maximum likelihood method.
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Accident Rate Estimation
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Figure 4.3. Accident rate estimation using the modified AA procedure.
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Accident Rate Estimation
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Souroe: Morrls at al. {1991},

Figure 4.4. Accident rate estimation using the Morris’
hierarchical Bayes method.
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Accident Rate Estimation
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Figure 4.5. Accident rate estimation using the two new
median estimators L1 and L2.
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Table 4.6. Total absolute errors for estimating
accident risk.

e
Estimators Total Absolute Errors "

MLE: Maximum Likelihood 7.04 |
v AA: Modified Arnold Antle 4.72 ’

MH: Morris’ Hierarchical 4.84
4.59

L.1: New Estimator
h=(&,-021)8,

L2: New Estimator

A =0.92( a,ﬁ,)

4.3. Summary

This chapter presents an improved empirical Bayes procedure using two
new approximate median estimators when considering an absolute error loss
function. Monte Carlo simulations were carried out to determine the two
constants k. and k, of the median estimators. The modified AA procedure and
the two median estimators were then evaluated using a simulated data set
reported by Morris et al. (1991). Results show that the modified AA procedure
and the two new median estimators are very promising.

It should be noted that if, the median estimators and the modified rule

presented in chapter 3 are combined, a new rule for the AA procedure can be



69

represented by setting & = 1.5 if & < 0.3 and estimating 8 by the equation

f = SY/ (1.5+SM); if & is greater than 10, then g would be set equal to 10 and,

accordingly, B would be estimated by p = SY / (10+«SM). Also, the sample size for

estimating the parameters is recommended to be greater than or equal to 100.
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Chapter 5

DEVELOPMENT OF A KNOWLEDGE-BASED MODEL

The needs for developing a knowledge-based model that can effectively
identify most significant causal factors and assess the accident risk for a traffic
event system are threefold. First, the estimation of accident rate through an
empirical Bayes procedure using accident data and vehicle exposure cannot clearly
show the effect of a suspected causal factor, since all of the factor effects are
represented by only one parameter, the mean accident rate (the Poisson mean).
An extraction of the factor effects from the mean accident rate is usually difficult
and inefficient. Second, the large and good quality data set necessary to produce
reasonably accurate estimates of parameters ¢ and 8 may not be easily obtained.
Third, since human factors play an important role in the traffic event system, it is
natural to adopt a subjective type of approach to the risk assessment probiem.

In this chapter, the procedure for developing a knowledge-based model is
discussed. The whole process begins with determining the model structure,
collecting and combining expert knowledge, then finalize the model. A strategy
based on the belief function theories (Dempster 1967; Shafer 1976) is used to
combine expert knowledge. An interpretation of the model is also given. An
application of this model to the problem of estimating accident risk and identifying

significant causal factors for wet pavement accidents is presented in chapter 6.
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5.1. Model Structure

In order to identify the cause and effect relationship between a traffic
accident and its suspected causal factors, a diagnostic type of structure was
selected. The structure of the model is constructed as a hierarchical event tree.
Figures 5.1 and 5.2 depict the model structure. The model has a maximum
number of five levels. Its highest level is the top event--a traffic accident. The
second level is represented by main events, such as bad driver/vehicle condition
and bad roadway section. The third level consists of potential initiating events,
such as bad pavement condition, bad geometric condition, and so on. The fourth
level (shown in figure 5.2) includes a variety of single events, such as low skid
resistance (SN), high surface rutting (RUT), high surface roughness (IPM), high
pavement surface age (AGE), horizontal curvature (HC), vertical alignment (VA),
driving difficulty {(DD), high average daily traffic (ADT), and high percentage of
time when a road surface is wet (TW); the lowest level comprises those
categorized levels for the factors of the proposition of bad roadway section in level
four. It should be noted that the hierarchy of the proposition of bad driver/vehicle
condition has only three levels, in recbgnition of the attainability of driver/vehicle
factors in practice. The ratings and definitions of the three quantities HC, VA,
and DD are given in Kulakowski et al. {1990b).

The model was realized using a collected expert knowledge base. The

collection of expert knowledge is described in the next section.
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Figure 5.1. The schematic diagram of the knowledge-based model, part L.
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Figure 5.2. The schematic diagram of the knowledge-based model, part II.
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5.2. Collection of Expert Knowledge

An expert is generally characterized by expertise in a specific subject or
area. The expert’s knowledge in this subject or area is usvally viewed as a
valuable asset. For the problem of identification and risk assessment of traffic
accidents, those researchers, highway engineers, and research engineers in the
Pennsylvania Department of Transportation and the Highwély Research Center of
Federal Highway Administration, and researchers in all of the Transportation
Institutes across the U.S. or other research institutes relating to transportation
research are considered to be experts in this area. A total of 28 experts were
chosen to provide estimates of the potential for a possible traffic event.

Based on the model structure depicted in figures 5.1 and 5.2, a
questionnaire (shown in appendix A) was designed to collect expert knowledge.
The questionnaire contains propositions for possible events in the traffic event
system. A scale from 0 to 10 corresponding to the probability scale 0 to 1 was set
as a degree of confirmation (or disconfirmation) for each body of evidence with
(or without) a potential contributing effect on the proposition. The scale is one of
increasing effect; that is, a score of 10 indicates the strongest effect on the
proposition. The factors in the fourth level of the model, including SN, RUT,
IPM, AGE, HC, VA, DD, ADT, and TW, were categorized into different levels to

reduce measurement variations,
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In general, the process of collecting expert knowledge is the most difficult
stage in constructing a knowledge-based model. It is time-consuming and has a
low ratio of response. For this collecting process, a total of 16 copies of the
questionnaire were returned over a 3-month period. Based on the collected
questionnaires, a body of expert knowledge was assembled. The procedure used

for combining the expert knowledge is given in the next section.

5.3. Combination of Expert Knowledge

Three distinct schemes were considered for combining the collected expert
knowledge. The first one is the min-max principle used in the fuzzy set theory
(Zadeh 1965; Dubois and Prade 1980; Fung and Fu 1975); the second is the
subjective Bayesian method for the rule-based system (Duda et al. 1976); the last
is Dempster’s rule of combination in the belief function theory (Dempster 1967,

Shafer 1976).

The min-max principle is based on the concept of union and intersection
operators in aggregating two sets. As an example, if A and B are two sets over a

universe V, and a € A and b € B, then the min-max principle states that:
aNbaaAb = min(a, b) (5.1)

alUbaaV b =max(a, b) (3-2)
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The difficulty in using this principle to combine the expert knowledge is that the
determination of when one should use the maximum principle or the minimum
principle for combination is very subjective. Also, the combination results using
the min-max principle, in general, are highly approximate and imprecise.

The subjective Bayesian method assumes that the collected bodies of
evidence for a proposition (hypothesis) are conditionally independent. If E stands
for evidence and H stands for hypothesis, then a likelihood ratio is defined as

R = PE|D (5.3)
P(E|H)
The likelihood ratio represents prior knowledge of a hypothesis. Experts are
supposed to assign a value for this ratio to each hypothesis. In general, it is a
difficult task for human experts to assign two values of conditioned probability at
same time. Furthermore, a modification is necessary when bodies of evidence to a
hypothesis are in conflict.

Dempster’s rule of combination (1967) calculates the orthogonal sum of the
bodies of evidence to a proposition. It considers both the heterogenous and the
conflicting conditions of the bodies of evidence. Therefore, the rule was selected
to be used in this subsection.

During the process of combining the expert knowledge, it is assumed that
there is no difference between experts’ perception in assigning a scale of

confirmation or disconfirmation to each body of evidence. Also, the assigned
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scales by the chosen experts are assumed to be normally distributed for each

specific proposition. Based on these two assumptions, the combination process

proceeded as follows:

Step 1.

Step 2.

Calculate the degree of support for each body of evidence. This
was carried out by calculating the trim mean of the collected
experts’ assigned scales on each body of evidence. The trimming
procedure excluded the most extreme 5% of the assigned scales
of confirmation or disconfirmation. It provides a more
representative scale for each Eody of evidence. Based on the
collected questionnaires, the trim mean for each body of evidence
was calculated and proportionally converted into a probability
scale value between 0 and 1. Tables 5.1 through 5.4 present the
calculated values.

Identify frames of discernment for each level. For example, in

the second level, the @ = {Bad Roadway Section, Bad

Driver/Vehicle}; the @ = {Bad Pavement Condition (PC), Bad
Geometric Condition (GC), Bad Traffic Condition (TC)} for the
proposition of bad roadway section in the third level; the g =

{Low SN, High RUT, High IPM, High AGE} for the proposition
of bad pavement condition in the fourth level. By the same rule,

the other frames of discernment can be identified. After



Table 5.1. Calculated degrees of support and basic probability numbers for

| Confirm.

Bad
Roadway
Section

the third level propositions.

78

Disconfir. m(A)

Bad PC 0.429 0.007 0.427

|| Bad GC 0.657 0.014 0.654
Bad TC 0.657 0.007 0.655

Good
Driver's Fair 0314 0.057 0301
Experience
Little 0.564 0 0.564
Normal 0.221 0.114 0.201
Driver's
Personality Nervous 0.393 0.057 0.379
Aggressive 0.643 0 0.643
Bad Driver/ =
Vehicle Tired 0.686 0 0.686
Condition Driver's
Physical D{:&‘:‘ﬂﬁz"' 0.879 0 0.879
Status
Alert 0.107 0.164 0.091
good 0.129 0.121 0.115
Vehicle .
Condition fair 0.257 0.043 0.249
poor 0.443 0.036 0.434
Notes: PC = pavement condition.
GC = geometric condition.
TC = traffic condition.
Confirm. = confirmation.
Disconfir.= disconfirmation.
m{A) = basic probability number--a measure of belief that commitied exactly to

each body of evidence.
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Table 5.2. Calculated degrees of support and basic probability numbers for the

factors in the proposition of bad pavement condition.

Bad
Pavement
Condition

Notes: Confirm.
Disconfir.

= — |

|

Confirm. Disconfir. m(A)

Low SN 0.728 0.007 0.727

High RUT 0.579 0.007 0.577

” High IPM 0.5 0.021 0.495

High AGE 0.314 0.036 0.306

<20 0.979 0 0.97%

20-25 0.871 0 0.871

25-30 0.678 0 0.678

SN

30-35 0.407 0.007 0.405

35-40 0.236 0.07 0.223

| >40 0.093 0.007 0.092

>1.0" 0.721 0 0.721

RUT 0.5-1.0" 0.379 0.007 0.377

<{.5" 0.143 0.057 0.136

>300 0.657 0 0.657

250-300 0.579 0 0.579
200-250 0.443 0 0.443 I

IPM

150-200 0.336 0 0.336

100-150 0.221 0 0.221

<100 0.093 0 0.093

>15 0.629 0 0.629

10-15 0.393 0 0.393

AGE 5-10 0.214 0.014 0.212
2-5 0.093 0.114 0.083 "

<2 0.043 0.207 0.034

confirmation,
disconfirmation.
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Table 5.3. Calculated degrees of support and basic probability numbers for the
factors in the proposition of bad geometric condition.

He Slight 0.136 0.136 0.12
(Horizontal Moderate 0.379 0.043 0.369
Curvature)
Bad Severe 0.693 0 0.693
Geometric
Condition VA Slight 0.1 0.129 0.088
(Vertical Moderate 0.3 0.021 0.296 |
Alignment)
Severe 0.6 0 0.600
Slight 0.15 0.093 0.138
DD J
(Driving Moderate 0.386 0 0.386
Difficulty)
Severe 0.714 0 0.714

Notes: Confirm. = confirmation.
Disconfir.= disconfirmation.
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Table 5.4. Calculated degrees of support and basic probability numbers for the
factors in the proposition of bad traffic condition.

m(A)
=>15,000 0.564 0 0.564
10,000-15,000 0.407 0 0.407 |
6,000-10,000 0.279 0 0.279
ADT
3,000-6,000 0.171 0.05 0.164
Bad
Traffic 1,000-3,000 0.064 0,129 0.056
Condition
< 1,000 0.021 0.221 0016
»20% 0.634 0 0.634 |
1 159:-20% 0.5 0 0.5
TW 10%-15% 0.336 0 0.336
59-109 0.221 D.043 (.214 W
| 5% 0.093 0.093 0.085
Notes: Confirm. = confirmation.
Disconfir.= disconfirmation.
ADT = average daily traffic (vehicles).
TW = percentage of time when road surface is wet(%).
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identifying the frames of discernment, calculate the basic
probability number m(A) for each body of evidence using the
Dempster’s rule of combination to combine the values of
confirmation and disconfirmation obtained from step 1. The
calculated basic probability numbers are shown in the last
columns of tables 5.1 through 5.4. It should be noted that the
calculated basic probability numbers of the factors in the lowest
level represent the degree of support of these factors. They will
be used directly in finalizing the model. The basic probability
numbers for those factors in tﬁe third and fourth levels were then
used to calculate their belief intervals.

Calculate the belief intervals for the propositions in the third
level, which include bad pavement condition, bad traffic condition,
bad geometric condition and bad driver/vehicle condition. Tables
5.5 and 5.6 show the belief intervals for the propositions.
Calculate the belief function numbers for the fourth level factors--
low SN, high RUT, high IPM, high AGE, HC, VA, DD, high
ADT, and high TW. Results are shown in tables 5.7 through 5.9.
Propagate the belief function numbers and the degrees of support

from the lowest level to the top level to finalize the model.



Table 5.5. The belief intervals of the factors in the propaosition
of bad roadway section.
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Note:

Bad Roadway Section m(A) Bel-1 Bel-2
0.427 0.135 0.314
0.654 0.341 0.519
0.655 0.344 0.523

Bei-1 = lower probability.

Bel-2 = upper probability.

—_— ]

Table 5.6. The belief intervals for the factors in the proposition
of bad driver/vehicle condition.

| Bad Driver/Vehicle Condition m{A) Bel-1 Bel-2 ,
Good 0.096 0.007 0.058
Driver's \
Experience Fair 0.301 0.027 0.084
Little 0.564 0.079 0.141
Normal 8.201 0.015 0.070
Driver’s
Personality Nervous 0.379 0.038 0.095
Aggressive 0.643 0.111 0.172
Tired 0.686 0.134 0.196
Driver’s
Physical Drug/Alcohol 0.879 0.446 0.508
influenced
Status
Alert 0.091 0.006 0.058
Good 0.115 0.008
Vehicle .
Condition Fair 0.249 0.020
Poor




Table 5.7. Calculated belief function numbers for the factors in the
proposition of bad pavement condition.

| Bad Pavement Condition m(A) Bel(A) ||
| Low SN 0.727 0412

Hig RUT 0.577 0.212
High 1IPM 0.495 0.152
High AGE 0.306 0.068

Table 5.8. Calculated belief function numbers for the factors in the
proposition of bad geometric condition.

| Bad Geometric Condition m(A) Bel(A) .

HC 0.333 0.198

VA 0.333 0.203

I DD 0.333 0.199

Table 5.9. Calculated belief function numbers for the factors
in the proposition of bad traffic condition.

Bad Traffic Condition m(A) Bel(A)

[ High ADT 0.564 0312 |
|| High TW 0.654 0.459 |

84
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5.4. An Interpretation of the Model

Essentially, the model hypothesizes that the occurrence of a traffic accident
is due to a bad road\;tzay section and/or bad driver/vehicle conditions. This is
intuitively correct, since the traffic event system is commonly viewed as a human-
vehicle-roadway system. The results based on the constructed expert knowledge
base reveal the relative weight (proportion) of each proposition to the top event, a
traffic accident. For the roadway section part, the belief intervals for the three
propositions are:

o Bad pavement condition (PC): [0.135, 0.314]

e Bad geometric condition (GC): [0.341, 0.519]

e Bad traffic condition (TC): [0.344, 0.523]
As an illustration, the belief interval for the bad pavement condition is interpreted
as the total belief, based on the human experts’ judgement, that a bad pavement
condition will contribute to a bad roadway section to a degree of 0.135 to 0.314
(on a scale of 0 to 1). The upper probability 0.314 represents the total belief of
1 -Bel({Bad GC, Bad TC}). It should be noted that there is a large variation
between the lower and upper probability values. This indicates that there exists a
large difference of recognition among human experts in considering this
proposition. It is also noted that the sum of the three lower degrees of belief is
less than 1. This is a feature of Shafer’s theory. It reveals that for each frame of

discernment there always exists an unassigned degree of belief.
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The belief intervals for the factors in the proposition of bad driver/vehicle
condition indicate that there is a high degree of belief interval, [0.446, 0.508], for a
drug/alcohol-influenced driver. Likewise, a tired or aggressive driver is dangerous,
too. An inexperienced driver is another possible cause of a traffic accident. In
essence, these results coincide with this study’s engineering judgements.

When considering suspected causal factors for the proposition of bad
pavement condition, the low SN possesses a high degree of belief with a value of
0.412 and thus is considered as most significant factor. For the factors in the
proposition of bad geometric condition, there is not much difference in the degree
of belief between one factor and the next factor in the proposition. The factor of
high TW has a higher degree of belief than the factor of high ADT in the
proposition of bad traffic condition.

In order to give a clearer picture of this interpretation, several figures were
plotted and are shown in appendix B. Essentially, they represent the results that

displayed in tables 5.1 through 5.9.

5.5. Summary

In this chapter, a knowledge-based model for the accident identification
and risk assessment was developed. The formulation of this model is based on a
collected expert knowledge base and the belief function theory (Dempster 1967,

Shafer 1976) introduced in the chapter 2. A questionnaire as shown in appendix
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A was designed to collect the expert knowledge. The application of the belief
function theory to the problem is considered to be a pioneering step.

The developed model is characterized by several features which can be

summarized as follows:

+ The maodel is flexible. It can be used under the conditions of data
measurements being available or not available. It can provide a degree
of belief for a specific factor or a combined belief for the top event--a
traffic accident,

e The model can be used to identify significant causal factors for each
proposition. |

o The model can be updated when additional expert knowledge is
available. The model is more mathematically rigorous than heuristic
because Dempster’s rule of combination and belief function theory
provide a mathematical foundation for the combination and
representation of expert knowledge.

e The model reveals unacceptable values of suspected causal factors such
as SN, RUT, ADT, and so on, using calculated degree of belief.

o An important drawback of this model is that the construction of the
model is based on human judgement and therefore is subjected to

individual uncertainties.
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Chapter 6

A CASE STUDY - DEVELOPMENT OF A WET PAVEMENT INDEX

6.1. Introduction

A wet pavement accident is a type of traffic accident that occurs on a wet
pavement surface. The high accident risk of wet pavement accidents has been
confirmed by Campbell (1971) and Brodsky and Hakkert (1988). Essentially, the
reduced roadway surface traction and the restricted visibility due to rainy or snowy
weather are the two main causes of increased risk of traffic accidents on wet
roads. A study by Kulakowski and Harwood (1990) showed that roadway skid
resistance can be reduced by 20 to 30% when the water film on the road surface
is 0.05 mm. The objective of this case study is to develop a wet pavement index
(WPI) using traffic and roadway characteristics to identify those segments of
highway having a high potential for wet pavement accidents.

In order to estimate the accident risk of wet roads, the vehicle exposure M,
defined in chapter 2 was modified to account for the factor of percentage of time
when a road surface is wet. WM, is the new notation representing the wet vehicle

exposure and is calculated as:

WM, = SL*ADT xDAYS *TW, (6.1)
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where:
SL = section length (miles)
ADT = average daily traffic (number of vehicles/day)
DAYS = time duration (days)
TW = percentage of time when road surface is wet

It may be noted that when considering the wet pavement accident problem for the
State of Pennsylvania, the value of WM, is often in the range of 0.02 to 2.5.

To develop the wet pavement index, several methodologies, including
classical regression methods, a direct Bayesian regression method (proposed in the
author’s thesis proposal), a hierarchical accident index method (Kulakowski et al.
1990), the improved empirical Bayes procedure developed in the previous
chapters, and the knowledge-based model presented in chapter 5, were applied to
estimate the risk of wet pavement accidents. An evaluation of these
methodologies was performed usirfg actual accident and roadway characteristics

data collected from 308 road sections in Pennsylvania.

6.2. Preliminary Data Analysis

The Pennsylvania Department of Transportation has provided a data base
for this study that consists of the accident records and other necessary information
for 308 highway sections in Pennsylvania. These records were for the years 1983-
88 and are given in a report by Kulakowski et al. (1990b). These sites had no
substantial improvements during the 1983-88 period. It was decided that the data

for 1983-85 would be used in evaluating the risk for wet pavement accidents and
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the results would then be used to predict the number of wet pavement accidents
for the years 1986-88.

A preliminary data analysis of the real data set was carried out before
evaluating those pre\.riclusly described methodologies. Figures 6.1 and 6.2 show the
histograms of the wet pavement accidents for the periods 1983-1985 and 1986-
1988, respectively. They essentially verify that the assumption of a Poisson
random variable for the occurrence of traffic accidents is suitable when figures 6.1
and 6.2 are compared with figure 6.3, generated Poisson distributions. The
relationship between wet pavement accidents and skid resistance is plotted in
figures 6.4 and 6.5. It is obvious from figures 6.4 and 6.5 that no simple
relationship can be assumed and that using the skid resistance alone as an index

of accident potential for a roadway section is inadequate.
6.3. An Evaluation of Methoavlogies

In this section, a number of methodologies inciuding the classical regression
methods, the direct Bayesian regression method, the hierarchical accident index
method, the modified empirical Bayes procedures, and the knowledge-based
model were evaluated using the available real data set provided by PennDOT. A

comparison of these methods - presented in the next section.
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6.3.1. Classical Regression Methods

Regression analysis is a frequently used approach to construct a cause-and-
effect relationship between attributing factors and traffic accidents. A generic

form of the regression model can be represented by:
y[ =f(x ’ ﬂ) + e; i=1’2333"'7N (6'2)

where

y;, = observations (i.e., traffic accidents)

Il

x = vector of attributing factors

e = vector of parameters

€, = random disturbances {errors)
A general assumption behind this model is that the random disturbances ¢, are
uncorrelated with each other and are normailly distributed with zero mean and
constant variance. Also, the measurements of the attributing factors are assumed
to be free from errors. Based on these assumptions, different types of the model
such as linear additive type, nonlinear additive type, nonlinear multiplicative type,
and so on, ¢an be assumed.

The linear regression method using the least square technique is the

simplest method for performing parameter estimation. It gives a general picture

of the input-output relationship of a system. However, in most situations, the
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result may be misleading due to the existence of nonlinearity in the system. To
alleviate this problem, nonlinear regression methods are applied.

Three of the most commonly-used types, including linear additive type,
nonlinear additive type, and nonlinear multiplicative type, of regression model
were selected and applied to the data set provided by PennDOT (Kulakowski et
al. 1990b) to observe the effectiveness of regression methods in parameter
estimation. The attributing factors were filtered first through the step-wise
regression technique to choose the factors that were statistically and practically
significant. Regression analyses were then performed on the three models.

The first model is a linear additive model and is expressed as:

E(Y) = by + b(WM) + by(DD) + by(PS) + b(SN) + by(TP) (6.3)

The second model is a nonlinear additive model and is represented by:

E(Y)= b,+b,WM+b,PS+b,SN+b,TP+b(PS)(SN) +b(SN)(DD) +b,(SN)Y(TP) (6.4)
The third model is a nonlinear multiplicative model:

bl bz bl
E(Y) = b, W2 (DD (F5) (6.5)
(SN)™

where b, are parameters to be estimated and WM is the value of wet vehicle

exposure expressed in terms of millions of vehicle miles.
The parameters of the first and second models were estimated by using

MINITAB (Ryan et al. 1989) software, whereas the SAS NLIN procedure based
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on the Gauss-Newton and Marquardt methods was applied to estimate the
parameters of the third model. The regression analyses of these three models are
shown in appendix B. Figures 6.6 and 6.7 show the prediction results of future
(1986-88) wet pavement accidents on the same road sections for the linear and the
nonlinear additive models. The coefficients of multiple correlation of these two
models are around 0.51 (R’=26%). A major problem for these two models is that
they produce undesired negative estimates of future wet accidents. The prediction
results of the third regression model (equation 6.5) are shown in figure 6.8. The
coefficient of multiple correlation is 0.50 (R* = 25.2%), which may not be better
than the other two regression models; however, the problem of producing negative
estimates in the other two models is eliminated. A common problem in the use of
regression methods is sample size. A small data sample may not produce good

parameter estimates.
6.3.2. A Direct Bayesian Regression Method

The direct Bayesian regression method proposed in the thesis proposal
assumes that for a [ocation, there exists a cause-and-effect relationship between
the expected (average) number of accidents and the attributing factors and the
occurrence of the accidents is a Poisson random process. Since these attributing
factors are likely to be interactive, a multiplicative model is assumed. The

proposed approach uses a different technique from the classical regression
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approach in performing the parameter estimation task. The procedure of the

approach is as follows:

1.

Use the step-wise regression (or the best subset regression) technique
to identify the most significant attributing factors from the accident
history data.

Estimate the expected number of accidents A, (the Poisson mean) of
the Poisson model by using the multiplicative model (loglinear model)

dsi
y C
E@ =T[CzZ* fork=123,. (6.6)
J=l

Here A represents the random variable of expected number of
accidents A; Z, are attributing factors such as skid number, traffic
volume, driving difficulty, and so on; and C,, C, are coefficients to be

estimated.
Define a range of initial guess value for each parameter based on

engineering judgement to formulate a nested parameter space.

Use the Bayes theorem to update the probability of each possible value

of the parameters.

Obtain the expected values of the parameters using the ideal Bayes

estimator.
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6. Check the probability distribution of each combination of the
parameters. Shift the range of the parameter if it is necessary, then
repeat steps 4 through 6.

In essence, the procedure is different from conventional nonlinear
regression procedures such as Gauss-Newton, Marquardt, and Gradient methods
because the coefficients of the model are assumed to be random variables rather
than fixed parameters. To make a comparison, the procedure was evaluated on
the real data set to estimate the number of wet accidents using the model
assumed in equation 6.5. The results are plotted in figure 6.9. From this figure, it
may be observed that the method presents a close result to that obtained from the
SAS NLIN procedure. However, it is noted that the method depends on the
sample size of the data and the initial guess values and levels of the parameters.

Madifications are necessary to improve the estimation efficiency.

6.3.3. A Hierarchical Accident Index Method

The hierarchical accident index method was proposed in my thesis proposal
and applied to the wet pavement index project (Kulakowski et al. 1990b). Itis a
combination of subjective fuzzy reasoning and a probabilistic-type approach. The
model is constructed as a hierarchy with accident risk index (ARI) at the top level
and three indices--accident experience index (AEI), generalized skid resistance

index (SNI), and driving difficulty index (DDI)--at the second level. The lowest
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level is the attributing factors. Figure 6.10 depicts the concept of the hierarchical
structure. The combination of the three indices used the fuzzy eigenweight
method (Saaty 1977) to assign specific weight for each index. The definitions and

formulations of the three indices are shown as follows:

e Accident Experience Index

The accident experience index (AEI) should give, using the previous
accident statistics, a measure of relative hazardousness of the roadway condition
for each location of interest. Basically, the determination of the AEI is based on
the Rate Quality Control Method (Norden et al. 1956). A modification was made
to incorporate the information of accident severity and wet weather exposure.

Following the assumption of a Poisson distribution for the accident
frequency, critical accident rates for different highway groups can be calculated by
approximating the upper control limit of the number of accidents from "Poisson’s
Experimental Binomial Limit" table (Molina 1942) under a desired coefficient of
confidence. Statistically, if the coefficient of confidence is 0.995, the probability of
the observed number of accidents being greater than or equal to the upper limit is
0.005. This coefficient is subjectively chosen to set a control interval. The

approximate formula for the upper control limit H, of the accident rate ARX is

represented by:
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AR g , 1.0 (6.6)

H“ =ARX%,+¢:

The first two terms are obtained from approximating the Poisson distribution by a
normal distribution; the last term is due to the fact that only an integer number of
accidents can be observed. The constant ¢ is selected for different confidence
intervals; for instance, the ¢ value is 2.576 for a 99.5% confidence interval. The
procedure for determining the AEI is described as follows:

1. Identify the highway types: 1--intersections; 2--sections.

2. Calculate the average accident rate (RAavg) and average severity rate

(RSavg) for each collection of highway sections (a group):

2.1. Calculate the accident rate (ARX)) for each site, using the
maximum likelihood estimate for b, (= y, / m,).

2.2. Calculate the severity rate (SEVX) for each site. The severity
rate is defined as the total number of injuries and fatalities
divided by vehicle exposure.

2.3. Determine the average accident rate, RAavg, and average severity

rate, RSavg, by using:

N
21 6.7
RA,, = WZ ARX, (6.7)
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N

Y SEVX, (6.8)

1
RS =~
™ Nid

3. Calculate the accident rate, ARX, and severity rate, SEVX, for each
location of interest. It should be noted that the data used here may
differ from the data set used in step 2 for calculating the R4avg and

RSavg.

4. Calculate the critical accident rate (RCAT) and critical severity rate

(RCSEVY):
RA
RCAT, =RA__+c | —as . 10 (6.9)
it m, 2m,
RS
RCSEV, = RS, +c | —=2 + 19 (6.10)
m, 2m,

Here, ¢=2.576 for 99.5% confidence interval.
5. Calculate the accident experience index, AEI, for each site:

5.1. Normalize the accident rate and severity rate as:

ARX,
ARnorm, = :
RCAT,
SEVX,
SEVnorm, = L (6.11)
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5.2.1. If the total number of accidents and number of accident severity

are to be considered, then

AE], = max( ARnorm, , SEVnorm, ) (6.12)

5.2.2. If the number of wet accidents and number of wet severity are

to be considered, then:

( ARnorm, )(wet accident ratio),

WAnorm, = ;
W,/ 100.
WSEVnorm, = ( SEVnorm, )(wet accident ratio), (6.13)
TW, | 100.

and the AEI is calculated by

AEI, = max( WAnorm, , WSEVnorm, ) (6.14)

o Generalized Skid Resistance Index

The generalized skid resistance index (SNI) should take care of seasonal
and short-term variations of skid resistance due to environmental conditions. This
can be done by a normalization procedure (Wambold et al. 1988). The procedure
is designed to use a nonlinear regression model to normalize the skid resistance
measurement at the site of interest with respect to standard test conditions. It

requires weather information, dates of measurements, and other environmental
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conditions, including the air temperature for the site. Another normalization
procedure was then taken by first identifying the maximum value (SNMAX) of
adjusted skid numbers for each highway group and normalization was performed
by dividing the SNMAX by the skid number of each site of interest. The ratio is
then called SNI. It represents a relative measure of the roadway surface traction.
A site with a high SNI is supposed to represent a condition of low surface

traction.

e Driving Difficulty Index

The last index, driving difficulty index (DDI), is composed of three
variables, the rating of horizontal curvature (HC), the rating of vertical alighment
(VA), and the rating of driving difficulty. Detailed definitions of these three
variables are shown in the report by Kulakowski et al. (1990b). The driving
difficulty index is then formulated by a unweighted sum of these variables as

shown below:

DDI = %((HC rating) + (VA rating) + (DD rating)) (6.15)

e Accident Risk Index

Frequently, situations are encountered in which no precise measurements

or information on objects are available and comparisons among the objects must
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be made. The subjective assignment of weights to the objects is a natural way to
solve the problem. However, consistent assignments of the weights may not
always be possible. Saaty’s (1977) eigenweight method provides a solution to this
kind of problem. The application of this methad to obtain an accident risk index
was initiated by formulating a pair-wise comparison matrix of the three indices--
AEIL SNI, and DDI. A scale from 1 to 9, representing the intensity of importance,
was chosen for each pair of indices. It is defined (Saaty 1977) that a rating of 1
on the scale stands for equal importance of the two indices; 3 represents weak
importance--one index is slightly favored over another one; 35 is called strong
importance--one index is strongly favored over the other index; 7 is called
demonstrated importance--one index is strongly favored and its dominance is
demonstrated in practice; and 9 represents absolute importance--one index is
absolute in its importance over the other. The positions 2, 4, 6, and 8 are
intermediate ratings.

Appropriate weights can be cobtained from a set of normalized eigenvector
corresponding to the maximum real eigenvalue of the pair-wise comparison
matrix. The main requirement to assure consistent assignments of the weights is
that the maximum real eigenvalue of the pair-wise comparison matrix must be
equal to or very close to the dimension of the comparison matrix. For the
problem of estimating the risk of wet pavement accidents, the scales for the three
indices were subjectively selected based on engineering judgement. The rating

selected for SNI was between the weak importance and the strong importance
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over the AEI and was selected as possessing demonstrated importance over the
DDI; AEI was selected a rating between the equal importance and the weak
importance over the DDI. The pair-wise comparison matrix was then formulated

(see table 6.1).

Table 6.1. Pair-wise comparison matrix.

Index AFEI SNI DDI
ll |

20
7.0
1.0

The maximum eigenvalue of the comparison matrix was 3.002, which is very
close to the dimension of the matrix, 3. The corresponding normalized
eigenvector was then determined:

AEL w, = 0.187
SNI: w, = 0.715
DDI: w, = 0.098

Then the accident risk index was obtained by:

ARI, = wAEI + w,SNI + w,DDI (6.16)

The hierarchical accident index method was then evaluated on the real data

set to obtain ARI, which is called WPI for this wet pavement accidents problem,
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for each site. A sorting procedure was carried out on the obtained WPI’s to
prioritize the accident potential with respect to the number of wet accidents in
1986-1988. Results are shown in figure 6.11. Care should be taken when
comparing the predicted WPI's with the actual number of wet accidents since they
are not in the same scale. Thus, figure 6.11 is shown to provide an implication of

this method.

6.3.4. Modified Empirical Bayes Approach

In general, because of significant differences in traffic conditions that exist
on different highway sections, it is desirable that the various highway sections be
grouped into classes that shouwld have similar accident rates and then be subjected
to an empirical Bayes procedure as separate classes. Effective use of this
procedure will require that each class have a large number of sections. These are,
of course, conflicting recommendations, and some compromise must be made.
The results of computer simulation in chapters 3 and 4 showed that the class size
should be at least 60 (and preferably more than 100). When these procedures are
applied to the highway sections of an entire state, this requirement can be easily
attained. For the Pennsylvania data set the entire group of 308 highway sections
is treated as one class because of the relatively small size of the data set. The

results of applying the modified AA procedure include the maximum likelihood,
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Figure 6.11. Results of the hierarchical accident index method (1986-1988).
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and the two new estimators are presented in table 6.2, Table 6.2 indicates that
the new estimators have provided some improvement over the modified AA
procedure; additionally, all of the empirical Bayes procedures performed
considerably better than the maximum likelihood. It should be noted that the true
accident rate for each site of interest, based on the assumption of a Poisson-
gamma model for the occurrence of the accidents, can never be known precisely.
Thus, for this evaluation, the errors in predicting the numbers of wet pavement

accidents were used in the sum of absolute errors loss function. It should be also

noted that the AA procedure without the modification would have resulted in g =

-38.74, and accordingly an & of 1.5 was used in this evaluation. An exploratory

analysis of the real data set using the rule of fixed value of a is shown in table 6.3.
This analysis provides evidential support for the selected modified rule in chapters

3 and 4.

A sorting procedure was then carried out on the estimated results from the
modified AA procedure and two new estimators to prioritize the predicted
number of wet pavement accidents in ascending order. The results are shown in
figures 6.12, 6,13, and 6.14. As these figures illustrate, the predicted number of
wet accidents smoothly follows the increasing trend of actual wet accidents. This
reveals that the modified empirical Bayes procedures are effective approaches to

the estimation of accident potential for road sites.
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Table 6.2. Results of evaluation on the real data set.

Estimator S l

vm of Absolute Errors

MLE: Maximum Likelihood 535.12

AA: Modified Arnold Antle 453.98 ”

L1: New Estimator § = ( &, -021)p, 438.56 “

L2: New Estimator £ = 0.92( & pﬁ p)

Table 6.3. Results of AA procedure using different values of a.

« Value

Sum of Absolute Errors
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6.3.5. Knowledge-Based Model Approach

Two important features of the knowledge-based model developed in
chapter 5 need to be pointed out before proceeding with the evaluation. First, the
knowledge-based model can be used to predict the accident potential, a
probability interval in which a traffic accident is likely to take place, for a site of
interest if the measurements of the attributing factors become available. In
reality, difficulties exist in defining and collecting the driver/vehicle information.
Second, the calculated belief interval representing the accident potential for the
road site of interest does not specifically refer to any one type of accident.

For the real data set provided by PennDOT, data measurements are
available for the roadway and traffic characteristics only. Consequently, the
evaluation of the knowledge-based model will concentrate on predicting the
accident potential for roadway sections, that is, calculating the belief interval for
the proposition of the bad roa&way section. It should be also noted that due to
the absence of driver/vehicle information, the calculated belief interval for the
proposition of bad roadway section represents solely the portion of total belief
committed to the roadway section. It may not be used for predicting the number
of accidents occurring in the future. Hence, a site identified as a bad roadway
section with a high degree of belief does not necessarily have a large number of
accidents. In order to evaluate the model on the real data set, it was decided that

the wet pavement index should be defined as:
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[WPI-1, WPI-2] = 10*[Bel~1, Bel-2] (6.17)

where WPI-1 and WPI-2 are the lower and upper bounds of WPI, respectively;
while Bel-1 and Bel-2 are the lower probability and the upper probability of the
belief interval, respectively. The converting factor 10 was used to comply with the
confirmation scale set in the questionnaire shown in appendix A.

It is noted that the lower probability of the calculated belief interval for the
real data set ranges from 0.09 to 0.28 while the upper probability of the belief
interval ranges from 0.15 to 0.45. Histograms of these two probabilities are shown
in figures 6.15 and 6.16.

Since the proposition of bad roadway section is combined from three
bodies of evidence, the bad PC, the bad GC, and the bad TC, a high degree of
belief of a bad roadway section implies that at least one of its bodies of evidence
is in bad condition. This provides a simple and effective way to identify significant
casual factors.

For the purpose of identifying accident-prone road sites, the belief intervals
for the road sites, which represent the latent accident potential of a traffic
accident, were used to prioritize the road sites. However, a critical value of the
accident potential must be determined. According to the accident records
reported by the Accident Record System of PennDOT, shown in figure 6.17, the
roadway- and environment-related factors in the period of 1985-1989 account for

only 13.2% of all accidents. Definitions of these factors are shown in Mason et al.
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Figure 6.15. Histogram of the lower accident probabilities for roadway sections

in Pennsylvania in 1983-1985.
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Figure 6.17. Schematic diagram of the factors in all accidents
in Pennsylvania (1985-1989).
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(1991). This finding was therefore used as a basis to determine the critical value
of the accident potential of road sites. The belief intervals of the driver, vehicle,
and roadway section factors were then calculated. The results are displayed in
table 6.4. It may be‘noted that the belief interval for the proposition of bad
roadway section is [0.025, 0.189). Based on this belief interval, a road site is
identified to be hazardous when the lower probability of its belief interval is
greater than 0.189. Frankly speaking, this critical value is not absolute. It can be
changed when new evidence becomes available. A sorting procedure is then
carried out on the estimated WPI’s to prioritize the road sites. Results are shown

in figure 6.18.

Table 6.4. Calculated belief intervals for the factors in a traffic accident.

Traffic Accident m{A)
Bad Roadway Section 0.132 0.025 0.189
Poor Driver 0.831 0.805 0.969 "

I Poor Vehicle 0.037 0.006 0.170 ||

Source: Accident Record System, Pennsylvania Department of Transportation.

6.4. A Comparison of the Methodologies

After evaluating those developed methodologies on the real data set, a

comparison was made to determine the best method for the wet accident problem.
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Figure 6.18. The results of the knowledge-based model approach.
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Basically, the criteria to justify these methodologies are based on their
estimation efficiency and/or based on subjective judgement. The classical
regression methods, the direct Bayesian regression method, and the modified
empirical Bayes procedures can be justified from their estimation efficiency. On
the other hand, the hierarchical accident index method and the knowledge-based
mode] approach would be justified subjectively.

The classical linear and nonlinear additive regression methods, as discussed
earlier, produce negative estimates for the number of accidents. Hence, these two
methods are not considered. The nonlinear multiplicaptive model using the SAS
NLIN regression procedure or the direct Bayegian regression procedure, however,
provides a feasible approach to the wet pavement accident problem. Table 6.5
presents a comparison of all of the developed methods.

It is noted that the sum of absolute error between the actual and the
predicted number of wet accidents when using the SAS NLIN procedure is 512.72,
whereas the sum of absolute error for the direct Bayesian regression procedure is
539.56. A slightly better performance of the SAS NLIN procedure is observed.

When the SAS NLIN procedure is compared with the modified empirical
Bayes procedures, it is observed from the table 6.5 that the modified Bayes
procedures, especially the two new median estimator L1 and L2, are far better
than the SAS NLIN procedure.

The hierarchical accident index method is a combination of fuzzy reasoning

technique and probabilistic type of approach. It calculates the WPI’s based on the
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Table 6.5. Summarized results of the evaluation on the real data set.

Type of
Approach

Methods

Direct Bayesian

Sum of
Absolute
Errors

Predicted

Required Data

Accident Records

\ 539.56 . and Factor
Regression Accidents Measurements
Maximum Predicted | Accident Records
Likelihood 53512 Accidents and Factor
Measurements
Nonlinear Procedure 512.72 Predicted Acc;clllgnlt: ;Rcfgfrds
(SAS NLIN) Accidents Measurements
Obijective
. Predicted Accident Records
M::ilge&dur 453.98 Accidents and Factor
(Accident Rates) Measurements
. Predicted Accident Records
g;‘:’mm‘:‘i‘; 438.56 Accidents and Factor
{Accident Rates) Measurements
. Predicted Accident Records
gﬁ:‘mgz‘:’ig 431.82 Accidents and Factor
(Accident Rates) Measurements
. . Accident Records
Combined Hlferar(:hlcal N/A' Accident Risk and Factor
Accident Index
Measurements

Accident Risk Expert Knowledge
Subjective Knowledge-based N/A (Significant and Factor
Model
Factors) Measurements

*: Not applicable.
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accident records and the measurements of roadway and traffic characteristics. On
the other hand, the knowledge-based model approach calculates the total belief
that is committed to the proposition of a bad roadway section for each location of
interest. A comparison of these two methods with the Bayesian methods is
difficult since the WPI’s obtained by these two methods are the accident potential
for the road sites but not the predicted number of wet pavement accidents. It is
observed that, from figure 6.11, the hierarchical accident int;lex method performed
almost as well as the modified empirical Bayes procedures shown in the figures
6.12, 6,13, and 6.14.

The main disadvantage of the empirical Bayes procedures, however, is that
the procedures rely on accident records and data measurements of the roadway
sections to estimate the parameters in the prior distribution. If those data are not
available, the empirical Bayes methods cannot be applied. The same drawback
exists in the hierarchical accident index method. This disadvantage, however, does
not exist in the knowledge-based model approach, since an expert knowledge base
was constructed. The model provides a simple and easy way to identify bad
roadway sections and significant causal factors through the knowledge base. Its
performance is not fully justified on this real data set. Table 6.6 presents a
comparison of identifying significant causal factors for the modified empirical
Bayes procedures, the hierarchical accident index method, and the knowledge-

based model approach. Since all of the factor effects are represented by only one

parameter, the Poisson mean j, the wet vehicle exposure (defined in equation
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Table 6.6. Results of identifying significant causal factors on the real data set.

Methods Significant Factors
Modified AA Procedure Wet Vehicle Exposure (WM)
New Median Estimator L1 Wet Vehicle Exposure (WM) J
New Median Estimator L2 Wet Vehicle Exposure (WM)
Hierarchical Accident Index SN, DD
| Knowledge-based Model Driver, SN, TW, DD

6.1) is considered to be significant in estimating the accident risk when the
modified empirical Bayes procedures were used. The SN and DD are considered
to be significant when using the hierarchical accident index method. Based on
calculated belief intervals and belief function numbers presented in chapter 35, the

driver, SN, TW, and DD are identified as significant factors for a traffic accident.

6.5. Summary

In this chapter, a case study of developing a wet pavement index to
evaluate the accident risk of wet pavement accidents is presented. Several
methodologies including the classical regression methods, the direct Bayesian
method, the hierarchical accident index method, the modified empirical Bayes
procedures, and the knowledge-based model were developed and evaluated using

the real data set provided by PennDOT. Essentially, three types of approach are
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considered. One is the objective (direct) type regression method and Bayesian
methods; the second is the combined (indirect) type hierarchical accident index
method, and the third is the subjective (indirect) type knowledge-based model.
Based on an absolute error loss function, the modified empirical Bayes procedures
are considered to be superior to the other approaches for the risk assessment
problem. However, the knowledge-based model approach should be considered if,
in addition to predicting accident risk for roadway sections, an identification of
significant causal factors for an accident is desired. A further justification of the
capability of the knowledge-based model can be carried out if the driver/vehicle

information is available.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

In this research, three types of approach to the problem of identification
and risk assessment for a traffic accident were explored--one is called an objective
type of approach, which includes classical regression techniques, a direct Bayesian
regression method, and modified empirical Bayes procedures; the second is a
subjective type of approach using a developed knowledge-based model; the third
is a combined (hybrid) approach using a hierarchical accident index method that
was proposed in the thesis proposal. A summary of the development of new
methods and conclusions based on research findings are given in the following

subsections.

7.1. Summary

In this thesis, four new methods--the modified AA procedure, the two new
median estimators, the knowledge-based model, and the hierarchical accident
index method--were developed to assess the accident risk and identify significant
causal factors for a traffic accident.

The development work begins with an introduction of the Bayesian

methods and the belief function theory (Shafer 1976) in chapter 2. The problem
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of nonpositive and large values of parameter ¢ encountered in the AA procedure
was solved using a maodified rule presented in chapter 3. The modified rule, a =
1.5 for @ < 0 and @ = 10 for a > 10, proved to be very effective and efficient in
estimating the accident rate under simulated conditions. The random effect of
vehicle exposure represented by a Weibull random variable in the computer
simulation was investigated. A sample size of 100 was recommended for
parameter estimation.

In chapter 4, two new median estimators for a gamma distribution were
developed for the traffic accident problem in which an absolute error loss function
is considered. Based on computer simulation, the values of the two constants k,
and k, used to determine the two new median estimators, L1 and 1.2, were 0.21
and 0.92. An evaluation of the L1 and L2 on a simulated data set reported by
Morris et al. (1991) indicated that the L1 and L2 are very efficient. If the median

estimators and the modified rule presented in chapter 3 are combined, a new rule

~for the AA procedure can be represented by setting & = 1.5 if &4 < 0.3 and

estimating 8 by the equation |§ = §Y ] (1.5+«8M); if & is greater than 10, then &

would be set equal to 10 and, accordingly, 8 would be estimated by

B = SY [ (10+SM)-

A knowledge-based model was developed in chapter 5 to eliminate the
disadvantage of relying on accident records and measurement data to assess the
accident risk. The model is based on a collected expert knowiedge base and the

belief function theory. A questionnaire shown in appendix A was designed to
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collect the expert knowledge. The model can provide a degree of belief for a
single factor in a proposition or a combined degree of belief for a traffic accident.
It can be updated when additional expert knowledge is available. The model can
be used to identify significant causal factors by using a calculated belief function
number for each factor. The uncertainties introduced by human experts in
constructing the model, however, are an important drawback to the model.
Validation of these newly developed methods in addition to classical
regression methods was performed in chapter 6 on a real data set provided by
Pennsylvania Department of Transportation. The data set contains 308 highway
sections in Pennsylvania for the period of 1983-1988. Accident records and
measurements of site-specific characteristics such as SN, RUT, IPM, and so on,
were available for the 6-year period. Results of the validation showed that the
modified empirical Bayes procedures are superior to the other approaches based
on an absolute error loss function. The hierarchical accident index method
performed almost as well as the modified empirical Bayes procedures in
estimating the accident risk of wet pavement accidents. The knowledge-based
model can predict accident risk and identify significant causal factors for wet
accidents simultaneously. Its performance can be fully justified if driver/vehicle

information is available.
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7.2. Research Findings and Conclusions

A number of research findings presented in this thesis can be summarized

as follows:

1. Classical linear regression methods are not suitable for risk assessment
in traffic event systems due to the fact that a given system is nonlinear
and these methods may produce negative estimates.

2. Modifications to the direct Bayesian method are necessary in order to
improve its computational efficiency and accuracy.

3. The hierarchical accident index method provides an alternative means
for determining the accident potential for road sites by using both
accident records and roadway and traffic characteristics. It performs
almost as well as the modified empirical Bayes procedures on the real
data set.

4. The fundamental assumptions made in developing the modified
empirical Bayes procedures are appropriate for the traffic event
system.

5. DBased on an absolute error loss function, the modified empirical Bayes
procedures perform almost as well as the ideal Bayes procedure as
long as the sample size of the simulated data is equal to or greater
than 100. It should be noted that the ideal Bayes procedure is an

optimal estimator when the prior distribution is precisely known.
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When considering the random effect of vehicle exposure, the modified
empirical Bayes procedures proved to be effective for different levels
of vehicle exposure during computer simulation.

The modified empirical Bayes procedures result in a smaller sum of
absolute errors between the actual and the predicted number of wet
accidents than the other methods on the real data set.

The SN of each location in the real data set rem:l.iined unchanged
during the 1983-1988 period. This potentially increased the difficulty of
identifying significant causal factors for the wet pavement accident
problem.

The knowledge-based model provides detailed information on the
occurrence of traffic accidents. It predicts the accident risk for traffic
accidents. It is suitable for daily or routine surveys of highway systems
to identify significant causal factors or hazardous road sites.

The knowledge-based model can be updated and expanded when new
bodies of evidence are available.

Based on the evaluation of the real data set, wet vehicle exposure is
considered to be significant for the modified empirical Bayes
procedures. The SN and DD were identified as significant factors in
estimating the accident risk when the hierarchical accident index
method was applied. The significant causal factors are driver, SN, TW,

and DD when using the knowledge-based model approach.
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Based on the findings stated above, it is concluded that the modified
empirical Bayes procedures and the knowledge-based model are the methods that
should be considered for the problem of identification and assessment of risk in
traffic event systems.’ The modified empirical Bayes procedures should be used
when objective information--accident records and measurements of roadway and
traffic characteristics--is available. However, the knowledge-based model

approach should be applied if the objective information is not available.
7.3. Recommendations for Future Research

From the results of the simulations and the applications of the different
methods for estimating the risk of a wet pavement accident using the Pennsylvania
data, the following recommendations can be formulated:

1. The highway sections should be grouped into classes that number at
least 60 each, where the highway sections within classes are as similar
as possible in the properties that affect the risk of a wet pavement
accident. The quality of the measurements such as SN, TW, ADT,
RUT, AGE, and so on, should be improved.

2. The new estimators presented in this thesis, L1 and L2, performed
better than other known estimators on sets of computer-simulated and
actual accident data. More research on robustness should be

conducted to fully evaluate these new estimators.
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A study of the robustness of the selected model (gamma-Poisson)
should be performed. Perhaps some procedures for model
development and evaluation should be developed. This may be
especially true in regard to the form for the prior distribution.

More research should be conducted on the knowledge-based model to
explore and evaluate its capabilities and limitations. The feasibility of
expanding the knowledge-based model to become an expert system

should be investigated.
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PROPOSITION: ACCIDENT POTENTIAL FOR THE HIGHWAY
SECTION IS HIGH

Scale of Confirmation Scale of
Body of Evidence (0-10) Disconfirmation{0-10)

Pavement condition {PC) is bad.
I Geometric condition (GC) is bad.

Traffic condition (TC) is bad.

Note:

1. The scale of confirmation (or disconfirmation) represents an assigned degree of
support to each body of evidence that has a (or has no) contributing effect on the
proposition. It is a scale of increasing effect, that is, a rating of 10 represents the
strongest effect on the proposition.

2. There is no compelling reason to assign a scale of disconfirmation (or confirmation)
to each body of evidence, although it would be helpful. If you have no idea what
rating to assign on this scale, please assign a rating of zero.



146

PROPOSITION: ACCIDENT POTENTIAL FOR DRIVER /VEHICLE
IS HIGH

. . I|
. Scale of Confirmation Scale of Disconfirmation
u Body of Evidence (0-10) (0-10)

“ Driver’s experience is good.

Driver’s experience is fair.

II Driver’s experience is little. " |

Driver’s personality is normal.

Driver’'s personality is nervous.

Driver’s personality is aggressive.

Driver is tired or sleepy. : I
Driver is drug or alcohol influenced.

Driver is alert.

Vehicle condition is good.

Vehicle condition is fair.

Vehicle condition is bad.

Note:

1. The scale of confirmation (or disconfirmation) represents an assigned degree of
support to each body of evidence that has a (or has no) contributing effect on the
proposition. It is a scale of increasing effect, that is, a rating of 10 represents the
strongest effect on the proposition.

2. There is no compelling reason to assign a scale of disconfirmation (or confirmation)
to each body of evidence, although it would be helpful. If you have no idea what
rating 10 assign on this scale, please assign a rating of zero.
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PROPOSITION: PAVEMENT CONDITION (PC) IS BAD

Scale of Scale of The Unacceptable "

Confirmation (0-10) | Disconfirmation (0-10) | Value (or Range)

Body of Evidence

Skid resistance is low.
H Rutting is high.
Roughness is high.

Pavement age is high.

Note:

1. The scale of confirmation (or disconfirmation) represents an assigned degree of
support to each body of evidence that has a (or has no) contributing effect on the
proposition. It is a scale of increasing effect, that is, a rating of 10 represents the
strongest effect on the proposition.

2. There is fo compelling reason to assign a scale of disconfirmation (or confirmation)
to each body of evidence, although it would be helpful. If you have no idea what
rating to assign on this scale, please assign a rating of zero.

3, The unacceptable value (or range) for each body of evidence is designed to estimate
its critical value (or range).
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PROPOSITION: SKID RESISTANCE IS LOW

Ranges of Skid Resistance Degree o(fo(.'.‘loot;firmation Degree of (Dofsiclz)&;nﬁrmation I
< 20
20-25
25-30
30-35 I
|| 35 - 40
> 40
PROPOSITION: RUTTING IS HIGH
I Ranges of Rutting (in) Degree of C:;t:;;mation Degree of Disconfirmation
(0-10) (0-10)
> 10

‘ P — |




PROPOSITION: ROUGHNESS IS HIGH

Ranges of Roughness
(in/mi, IPM)

Degree of Confirmation
(0-10)

Degree of Disconfirmation
(0-10)

> 300

250 - 300

200 - 250
150 - 200

100 - 150
< 100

PROPOSITION: PAVEMENT AGE IS HIGH

Ranges of Pavement Age
(years)

Degree of Confirmation
(0-10)

Degree of Disconfirmation
(0-10)

149

> 15

10- 15

5-10

2-5

< 2
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PROPOSITION: TRAFFIC CONDITION (TC) IS BAD

-
Scale of Scale of The Unacceptable

Body of Evidence

Confirmation (0-10) | Disconfirmation (0-10) Value (or Range) I

Average daily traffic

is high.

Weather condition

is bad.

Note:

1. The scale of confirmation (or disconfirmation) represents an assigned degree of
support to each body of evidence that has a (or has no) contributing effect on the
proposition. It is a scale of increasing effect, that is, a rating of 10 represents the
strongest effect on the proposition.

2. There is no compelling reason to assign a scale of disconfirmation (or confirmation)
to each body of evidence, aithough it would be helpful. If you have no idea what
rating to assign on this scale, please assign a rating of zero.

3. The unacceptable value (or range) for each body of evidence is designed to estimate
its critical value (or range).
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PROPOSITION: AVERAGE DAILY TRAFFIC IS HIGH

Range of Degree of Confirmation Degree of Disconfirmation
Average Daily Traffic (0-10) (0-10)

> 15,000
10,000 - 15,000
6,000 - 10,000

3,000 - 6,000
1,000 - 3,000
< 1000

———

—

PROPOSITION: WEATHER CONDITION IS BAD

Degree of Confirmation Degree of Disconfirmation

Range of Wet Time (TW) (0-10) (0-10)

> 20 % "
15% - 20% ‘
10% - 15%
5% - 10%
< 5%

e s e = =~~~ ———— — |

Note: TW represents the percentage of time when the road surface is wet. It includes rainy,
foggy, and snowy days.
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PROPOSITION: GEOMETRIC CONDITION (GC) IS BAD

Body of Evidence Scale of Confirmation (0-10) | Scale of Disconfirmation (0-10)

HC is slight. - I
HC is moderate.

HC is severe.
VA is slipht.
VA is moderate.

VA is severe.
DD is slight

DD is moderate.

DD is severc.

Notes:
1. HC = horizontal curvature; VA = vertical alignment; and DD = driving difficulty.

Detailed definitions of these three quantities are shown in tables A.1 through A.3
(Kulakowski et al. 1990b).

2. The scale of confirmation (or disconfirmation) represents an assigned degree of
support to each body of evidence that has a (or has no) contributing effect on the
proposition. It is a scale of increasing effect, that is, a rating of 10 represents the
strongest effect on the proposition.

3. There is no compelling reason to assign a scale of disconfirmation (or confirmation)
to each body of evidence, although it would be helpful. If you have no idea what
rating to assign on this scale, please assign a rating of zero.




Criterion
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Table A.1. Horizontal curvature rating.

Rating "

Slight

Moderate

Severe

Warning
Signs

No curve
signs present

Curve signs with

advisory speed plates

Presence of the following curve
warning signs:

WI-1R or 1L = Turn sigh where
recommended speed is 30 mi/h or
less.

W1-3R or 3L = Reverse turn sign
used to mark two turns in opposite
directions that are separated by a
tangent of less than 600 ft.

W1-5R or S = Winding road sign

used where there are three or more
curves separated by a tangent of 600
ft. :

W1.6 = Large arrow sign used to
give notice of a sharp change of
alipnment in the direction of travel.

W1-8 = Chevron alignment sign
used to give notice of a sharp
change of alignment with the
direction of travel,

WI1-20R or 20L = Horseshoe curve
sign used to mark a curve that
produces a central angle of 135° or
more. (Pennsylvania Title 67, Pub.
68 -- official traffic control devices)

Degree of
Curvature

< 3°

4 . 8°

> 8°

Other

No evidence
of braking or
slowing down
upon
entering
curve

Evidence of hard braking, tire
markings, on pavement or shoulder
while rounding the curve; or an

unexpected, moderate curve by 1/2
mile or more of tangeny/flat curves. I
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Table A.2. Vertical alignment rating.

RATING

SLIGHT

MODERATE

SEVERE

Percent Gradient

Gently rolling, flat
grades (< 2%}

Moderate grades
(2% - 5%)

Steep grades (> 5%)

Available Sight
Distance

Unlimited sight
distance (> 1000 ft)

Somewhat
restrictive sight
distance (400 -
800 f1)

Very restrictive sight
distances (< 400 ft)

Length of Grade

Length of grade has
little effect on truck
speeds (< 5 mi/h
speed differential)

Length of grade
has some effect
on truck speeds 5
to 15 mi/h speed
differential)

Length of grade has a

major effect on truck
speeds (> 15 mi/h
speed differential)
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Table A.3. Driving difficulty rating.
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Rating

| Criterion

Stight

Moderate

Severe

Access Control in
Study Segment

Less than 10 access
points per segment

Between 10 and 30
access points per
segment

More than 30 access
points per segment

Separate turn lanes

Turns made from thru

u e
Turn Lan Or wurns not Center lane left turn lanes
Presence .
permitted
Commercial
characteristics of sirip
shopping development
Primarily in urbanized areas. In

Surrounding Land
Use

residential/farming
land use

Residential/commercial
land use

rough topography,
characterized by
farming activity along
the roadside
environment

Signalization

Uncontrolled
intersections

Less than three
signalized intersections
within segment

Major intersections
controlled by traffic
signals at > 3
locations within
segment
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Appendix B

A GRAPHICAL INTERPRETATION OF THE
KNOWLEDGE-BASED MODEL

In this appendix, figures B.1 through B.5 represent calculated belief
intervals and belief function numbers for the propositions in the second and the
third level of the knowledge-based model, respectively. Figﬁre B.6 depicts the
degree of belief of a significant causal factor, low skid resistance (SN), in the
proposition of bad pavement condition (PC). For the proposition of bad
geometric condition (GC), there is not much difference in the degree of belief
between one factor and the next factor. Therefore, only figure B.7 that shows the
degree of belief for driving difficulty (DD) is provided. For the factors in the
proposition of bad traffic condition (TC), the factor of high percentage of wet
time (TW) possesses a higher degree of belief than the factor of high average

daily traffic (ADT). Figure B.8 shows the degree of belief for high TW.



Body of Evidence

Belief Intervals in Bad Roadway Section

o i CTTTF o _ I T 7
3
e T
i v BT
0 0.1 0.2 0.3 0.4 0.5 0.6

Degree of Belief

N Lower Probability Upper Probability

Figure B.1. Calculated belief -intervals for the factors in the
proposition of bad roadway section.
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Body of Evidence

Belief Intervals in Bad Driver/Vehicle

Poor Vehicle Condition
Fair Vehicle Condition
Good Vehicle Condition
Alert Driver
Drug/Alch.Infiu. Driver
Tired Driver

Aggressive Person
Nervous Person
Normal Person
Inexpetienced Driver .
Fair Experienced Driver
Experieniced Driver

1 1

0 01 02 03 04 05 06
Degree of Belief

N Lower Probability Upper Probability

Figure B.2. Calculated belief intervals for the factors in the
Proposition of bad driver/vehicle condition.
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Body of Evidence

High AGE 3
High IPM ;,
High RUT .
Low SN

0 005 04 015 02 025 0.3 035 04 045
Belief Function Number

Figure B.3. Belief function numbers for the factors in the
proposition of bad pavement condition.
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Body of Evidence

DD

3

HC

............................
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Belief Function Number

Figure B.4. Belief function numbers for the factors in the
proposition of bad geometric condition.
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Body of Evidence

High ADT §

‘/= l/: l/: 1 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Belief Function Number

Figure B.5. Belief function numbers for the factors in the
proposition of bad traffic condition.
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Degree of Belief

0.8-

0.7

0.6

0.5

0.4

0.3

0.2

0.1

<20 20-25 25-30 30-35 35-40 >40
SN

Figure B.6. Degree of belief for low skid resistance (SN).
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Degree of Belief

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Sli'ght Mod;rate Severe
DD Level

Figure B.7. Degree of belief for driving difficulty (DD).
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Degree of Belief

0.9
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©
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o
'
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0.1 -
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Figure B.8. Degree of belief for high percentage of wet time (TW).
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C.1. Linear Regression Results for 1983-1985 Data Set

A REGRESSION ANALYSIS OF THE REAL TRAFFIC
ACCIDENT DATA SET

Appendix C

The regression equation for a total of 12 factors is

WA = 0,51 + 4.44 SL - 0.0538 SN + 0.317 RUT + 0.00157 IPM - 0.00234 AGE + 0,289 YW - 0.0532 PS
+0.000114 ADT - 0.0519 TP - 0.070 HC - 0,172 VA + 0.335 DD

Predictor Coeaf Stdev
Constant 0.508 1.959
SL 4,439 1.038
SH -0.05380 0.015M
RUT 0.3174 D.6801
1PN 0.0015469 0.003982
AGE -0.002343 0.008887
T 0.2893 0.1673

Ps -0,05322 0.01611
ADT 0.00011360 0.00002432
w -0,.05194 0.01837
HE -0.0701 0.1722
VA -0.1748 0.1953
oD 0.3354 0.1835
s = 2.198 R-8q = 26.2%

Analysis of Variance

SOURCE OF 33
Regression 12 505.555
Error 295 1424.715
Total 307 1930.270
SOURCE OF SEQ SS
SL 1 57.8568
SH 1 19,941
RUT 1 1.289
IPM 1 0.460
AGE 1 17.902
™ 1 34.835
PS 1 90.421
ADT 1 190,411
TP 1 48,760
HC 1 3.593
VA 1 3.933
oD 1 16.141

Lack of fit test

t-ratio p
0.26 0.796
4.28 0.000
-3.38 0.001
0.47 0.641
0.40 0.692

-0.26 0.792
1.73 0.085%
-3.30 0.001
4.567 0.000
-2.83 0,005
-0.41 0.684
~0.89 0.374
1.83 0.04%

R-sqfadj) = 23.2%

Possible interactions with variable ADT (P = 0.01%1)
Possible interactions with variable TP (P = 0.0463)
Possible lack of fit at outer X-values (P = 0,000)
Overall tack of fit test is significant at P = (.000

STEPWISE REGRESSION OF WA ON 12 PREDICTORS, WITH N =

MS F -]
42.130 8.72 0.000
4&.830

308
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Based on the above results, the statistically significant attributing factors are:

STEP
CONSTANT

ADT
T-RATIO

PS
T~RATIO

5L
T-RATIOD

SN
T-RATIO

TP
T-RATIO

™
T-RATEOQ

ob
T-RATIO

STEPWISE REGRESSION OF WA ON 10 PREDICTORS, WITH N =

STEP
CONSTANT

WM
T-RATIO

PS
T-RATIO

3N
T-RATIO

P
T-RAT!O

]

1
1.112

1.50
T.47

1 2 3
1.1693  3.6024 1.7683
0.00014 0.00014 0,00014
&.17 6.46 6.72
-0.057 -0.061

-3.68 =4.00

4.0

3.79

2.37 2.32 2.27
11.08 14.85 18.&9

2 3
3.702 5.661
1.56 1.58
7.92 8.15
<0.081 -0.067
~4.04 447
=0.045

~3.25

2.25 2.22
9.1 22.41

WM, ADT, SN, PS, TP, DD.

The regression equation for the selected factors is

4
3.5882

0.00014
6.76

-0.067
443

4.3
4.4

=0.045
-3.20

2.24
21.35

4
5.732

1.62
B.49

-0.058
-3.85

-0.048
~3.50

-0.062
'3-48

2.18
25.39

5
3.6344

0.00014
6.93

-0.058
-3.86

.4
4.25

~0.047
-3.41

-0.057
-3.17

2.21
23.88

6
1.1236

0.00014
6.71

-0.082
-4.09

4.3
4,16

-0.060
-3.96

-0.058
-3.25

0.31
2.01

308

7
-0.1319

0.00012
5.72

-0.054
~3.42

4.4
4.23

-0.056
-3.69

-0.057
-3.21

WA = 5.05 + 1.54 WM - 0,0443 SN - 0.0520 PS - 0.0607 TP + 0.216 DD

Predictor
Constant
WM

SN

PS

TP

DD

Coef
5.048
1.5440
-0.04434
-0.05198
-0,06073
0.2158

Stdev
1.040
Q.1991
0.01393
0.01558
0.01774
0.1773

t-ratio
4.85
7.75
-3.18
-3.34
-3.42
1.22

p
0.0400
0.000
0.002
0.001
0.001
0.225%
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s = 2.178

R-5q

= 25.7%

¢ Analysis of variance

SOURLCE
Regression
Error
Total

DF

55

3 497.031
302 1433.239
307 1930.270

D

T e

« Lack of fit test

Possible interactions with variable WM (P
Possible interactions with varfable PS (P
Possible interactions with varisble TP {P
Possible interactions with varisble DD (P
Possible lack of fit at outer X-values (F

SEGQ S5

297.556

36.643
98.359
57.438

7.025

R=sqgladj} = 24.5%

MS
§9.406
4.746

Honwmn

F
20.95

0.018)
0.000)
0.000)
0.073)
0.000)

Oversll lack of fit test is significant at P = 0,000

C.2. Nonlinear Additive Regression Results for 1983-1985 Data Set

« The regression equaticn of the selected factors is

p
0.000
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WA = 6,72 - 0.0957 SN - 0.0715 PS ~ 0,127 TP + 0.00880 SH*DD + 0.00051 SN*PS+ 0.001735H*TP + 1.49

WM

Predicter
Constant

= Analysis

SOURCE
Regresgion
Error
Total

Coef Stdev
6.720 2.733
-0.09568 0.07139
~-0.07150 0.06220
«0, 126467 0.06649
0.008601 0.004595
0.000809 0.001634
0.001727 0.001662
1.4%03 0.2007
R-zq = 26.8%
of varience
DF ss
7 512.4646

300 1817.623
o7 1930.26%

F
1
1
1
1
1
1
i

SEQ 55
31.576
73,564
42.462
95.7v8
0,155
8.661

260.450

t-ratio
2.46
-1.34
-1.15
-1.%0
1.87
0.37
1.04
T.42

p
0.014
0.181
0.251
0,058
0.082
0.710
0.300
0.000

R-sq(adj) = 26.8%

MS
73.235
4.75

3
15.50

p
0.000



s Lack of

fit test

Possible interactions With variable PS (P = 0.000)
Possible interactions with variable TP (P =
Possible interactions with variable SH*TP (P
Possible interactions with variable W (P =
Possible lack of fit at outer X-values (P =
Cverall lack of fit test is significant at P = 0,000

C.3. Linear Regression Results for 1986-1988 Data Set

0
0
0

-000)

= 0.001)
034}
.000)

= The regression equation of a total 12 factors is
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WA = - 6.15 + 3.76 SL - 0.0609 SN + 0.485 RUT + 0.00380 [PM + 0.00674 AGE + 0.495 TW - 0.0536 PS
+0.000151 ADT - 0,0236 TP + 0.073 HC - 0,105 VA + 0.174 DD

Predictor Coef Stdev
Constant -6.150 3.268
SL 3.759 1.038
SN «0.056093 0.01428
RUT 0.4850 0.6781%
IPM 0.003802 0.003851
AGE D.004743 0.008901
T D.6955 0.2191
PS -0.05359 0.01605
ADT 0.00015108 0.00002408
4 -0.0235¢9 0.018%0
HE 0.0734 0.171%
VA -0.1053 0.1973
DD 0.1735 0.1832
s = 2.1 R-8q = 27.9%

* Analysis of Variance

SQURCE DF S8
Regression 12 549.133
Error 295 1415.786
Total 307 1964.919
SOURCE DF SEQ 5SS

SL 1 31.362

SN 1 73,896

RUT 1 3.696

1PH 1 0.054

AGE 1 24,861

™ 1 68.478

PS 1 64.834

ADT 1 267.291

7P 1 8.721

HC 1 0,194

VA 1 1.441

oD 1 4.305
* Lack of fit test

t-ratio

p
0.081
0.000
0.000
0.474
0.324
0.449
0.002
0.001
0.000
0.213
0.670
0.5%94
0.344

R-sq(adj) = 25.0X

MS
45.761
&. 799

Possible curvature in variable VA (P = 0.019)
Possible lack of fit at outer X-values (P = 0.000)
overall lack of fit test is significant at P = 0.000

£
9.54

p
0.000

« STEPWISE REGRESSION OF WA ON 12 PREDICTORS, WITH N = 308



STEP 1 2 3 4 5
CONSTANT  0.6826 2.9337 5.3059 -3.5424 -5.8770
ADT 0.00015 0.00015 0.00015 0.00015 0.00015
T-RATIO 6.80 7.07 7.16 7.14 7.37
PS «0.053 -0,080 -0.057 -0.081
T~RATIO ~3.40 -3.M -3.81 -4.15
SN -0.054 -0.058 -0.064
T-RATIO -3.82 =4.16 -4.61
T 0.69 0.75
T-RATIO 3.53 3.1
sL 3.8
T-RATIO 3.M
5 2.36 2.32 2.27 2.23 2.19
R-SQ 13.1 16.29 20.12 23.26 25.62

STEPWISE REGRESSION OF WA ON 10 PREDICTORS, WITH N =

STEP 1 2
CONSTANT  0.6472 3.0174
W 1.32 1.36
T-RATIO 7.73 8.1
PS5 -0,056
T-RATID -3.67
SN
T-RATIO
TP
T-RATIO
g 2.32 2.27
R-5Q 16.32 19.85

WA = 5.35 + 1.35 WM - 0.0568 $K - 0.0548 PS -~ 0.0434 TP + 0.047 DD

The regression equation for the selected factors is

3 &
3.4449  5.4969
1.36 1.37
8.30 8.40
-0.063 -0,038
-4.21 -3.72
-0.056 -0.057
=4.01 *4.18
-0.044

=2.43

2.22 2.20
43.09 25.34

Predictor Coef Stdev t-ratioc p
Constant 5.351 1.049 5.10 0.G00
W 1.3547 0.1708 7.93 0.000
SN -0.05679 0.01405 ~4 .04 0.000
PS -0.05481 0.01578 -3.47 0.001
TP -0.04338 0.01795 -2.42 0.016
DD 0.0467 0.1755 0.26 0,795
s = 2.204 R-8q = 25.4% R-sq(adj) = 24.1%

Analysis of Variance

SOURCE [+13 sS
Regression S 498.256
Error 3oz 1466663
Total 307 1964.919
SOURCE DF SEQ S8

MVM 1 320.709

F

308

MS p
99.651 20.52  0.000
4.856
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SN 1 61.518
PS 1 87.147
TP 1 28.554
oo 1 0.328

e Lack of fit test

Passible interactions with variable PS (P = 0.010)
Possible interactions with varisble TP (P = 0.011)
Possible lack of fit at cuter X-values (P = 0.000)

Overall lack of fit test is significant at P = 0.000

C.4. Nonlinear Additive Regression Results for 1986-1988 Data Set

s The regression equation for the selected factors is

WA = 11.2 - 0.216 SN - 0.179 PS - 0.0954 TP + 0.00217 SH*DD + 0.00340 SN*PS + 0.00137 SN*TP + 1.3%
WM .

Predictor Coef Stdev t-ratio p
Constant 11.157 2.755 4.05 0.000
SN ~0.21563 0.07197 -3.00 0.003
PS -0.17933 0.056283 -2.85 0.005
TP -0.09541 0.06745 =1.41 0.158
SH*DD 0.002172 0.004627 0.47 0.639
SN*P3 0.003404 0.001649 2.08 0.040
SN*TP 0.001368 0.001679 0.81 0.416
WM 1.3592 0.1714 7.93 0.000
s = 2,1 R-8q = 25.7X R-sq(adj) = 25,0%

* Analysis of Variance

SOURCE DF 5S MS F [+
Regression 7 524.19%1 74.884 15.59 0.000
Error 300 1840.728 4.802

Total 307 1964 .919

SOURCE DF SEQ 53

SN 1 65.042

PS 1 £5.783

P 1 25.129

SN*DD 1 45,783

SH*PS 1 14.300

SN*TP 1 6.210

] 1 301.943

o Lack of fit test

Possible interactions with variable PS (P = 0.032)
Possible interactions with variable TP (P = 0.003)
Possible interasctions with variable SN*TP (P = 0.019)
Possible Lack of fit at outer X-values (P = 0.000)
Overall lack of fit test is significent at P = 0,000
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C.5. Nonlinear Multiplicative Regression Results

The following results were obtained from the SAS NLIN procedure (Gauss-
Newton method)

« The regression equation for the selected factors is
WA = 3318.25(WM**(_6561)3(0D**0, 113853 (PS**(-1.387))/{SN**0.4478)

* Analysis of Variance

SOURCE DF 111 S
Regression 4 1838.125 459,531

Error 303 1442, 880 &.760 .
Total 307 1930.26%

The R-sq = 1 - Error/Total = 0.252
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